精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.
(1)求椭圆C的方程;
(2)AB为椭圆C上满足△AOB的面积为的任意两点,E为线段AB的中点,射线OE交椭圆C于点P.设t,求实数t的值.
(1)y2=1(2)t=2或t
(1)设椭圆C的方程为=1(ab>0),
由题意知解得 
因此椭圆C的方程为y2=1.
(2)(ⅰ)当AB两点关于x轴对称时,设直线AB的方程为xm.
由题意得-m<0或0<m.
xm代入椭圆方程y2=1,得|y|=.
所以SAOB=|m.解得m2m2.①
因为tt()=t(2m,0)=(mt,0),
P为椭圆C上一点,所以=1.②
由①②,得t2=4或t2
t>0,所以t=2或t.
(ⅱ)当AB两点关于x轴不对称时,设直线AB的方程为ykxh.
将其代入椭圆的方程y2=1,得
(1+2k2)x2+4khx+2h2-2=0.设A(x1y1),B(x2y2).
由判别式Δ>0可得1+2k2h2
此时x1x2=-x1x2
y1y2k(x1x2)+2h
所以|AB|=.
因为点O到直线AB的距离d
所以SAOB|AB|d×2×××××|h|.
SAOB,所以××|h|=.③
n=1+2k2,代入③整理得3n2-16h2n+16h4=0.
解得n=4h2nh2,即1+2k2=4h2或1+2k2h2.④
因为tt()=t(x1x2y1y2)=
P为椭圆C上一点,
所以t2=1,即=1.⑤
将④代入⑤,得t2=4或t2.
t>0,故t=2或t.
经检验,适合题意.
综合(ⅰ)(ⅱ),得t=2或t
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:+=1(a>b>0).
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程.
(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A,B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
(3)过原点O任意作两条互相垂直的直线与椭圆+=1(a>b>0)相交于P,S,R,Q四点,设原点O到四边形PQSR一边的距离为d,试求d=1时a,b满足的条件.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,且离心率.

(1)求椭圆的标准方程;
(2)若直线与椭圆相交于两点(不是左右顶点),椭圆的右顶点为,且满足,试判断直线是否过定点,若过定点,求出该定点的坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的焦点与椭圆的焦点重合,且该椭圆的长轴长为,是椭圆上的的动点.
(1)求椭圆标准方程;
(2)设动点满足:,直线的斜率之积为,求证:存在定点
使得为定值,并求出的坐标;
(3)若在第一象限,且点关于原点对称,点轴的射影为,连接 并延长交椭圆于
,求证:以为直径的圆经过点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,已知A,B分别为椭圆+=1(a>b>0)的右顶点和上顶点,直线l∥AB,l与x轴、y轴分别交于C,D两点,直线CE,DF为椭圆的切线,则CE与DF的斜率之积kCE·kDF等于(  )
A.±B.±
C.±D.±

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:+=1(a>b>0)的离心率e=,a2与b2的等差中项为.
(1)求椭圆E的方程.
(2)A,B是椭圆E上的两点,线段AB的垂直平分线与x轴相交于点P(t,0),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是(  )
A.圆B.椭圆
C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆C:=1,过点M(2,0)且斜率不为0的直线交椭圆C于A,B两点.在x轴上若存在定点P,使PM平分∠APB,则P的坐标为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆E=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于AB两点.若AB的中点坐标为(1,-1),则E的方程为________.

查看答案和解析>>

同步练习册答案