精英家教网 > 高中数学 > 题目详情
已知函数
(1)当m=2时,求函数y=f(x)的图象在点(0,0)处的切线方程;
(2)讨论函数y=f(x)的单调性.
【答案】分析:(1)根据导数的几何意义求出函数f(x)在x=0处的导数,从而求出切线的斜率,再用点斜式写出切线方程,化成斜截式即可;
(2)先求出函数f(x)的导函数f'(x),然后进行配方,讨论的符号,结合导函数f'(x)的符号,即可判定函数的单调性.
解答:解:(1)当m=2时,
则f'(x)=x2-4x+3,故f'(0)=3,
函数y=f(x)的图象在点(0,0)处的切线方程为y=3x.
(2)
,又m>0,即时,f'(x)≥0,
则函数y=f(x)在(-∞,+∞)上是增函数;
,又m>0,即时,
由f'(x)>0,得
由f'(x)<0,得
故函数f(x)在区间上是增函数,
在区间上是减函数.
点评:本题主要考查了利用导数研究曲线上某点切线方程,以及函数单调性的求解,同时考查了计算能力,转化的思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源:2013年江苏省高考数学模拟试卷(一)(解析版) 题型:解答题

已知函数
(1)当m=0时,求函数f(x)在区间上的取值范围;
(2)当tanα=2时,,求m的值.

查看答案和解析>>

科目:高中数学 来源:2013年江苏省高考数学模拟试卷(五)(解析版) 题型:解答题

已知函数
(1)当m=0时,求函数f(x)在区间上的取值范围;
(2)当tanα=2时,,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式
(1)当m=2时,求曲线y=f(x)在点(0,0)处的切线方程;
(2)讨论函数y=f(x)的单调性;
(3)若函数f(x)既有极大值,又有极小值,且当0≤x≤4m时,数学公式恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数数学公式
(1)当m=-1时,求函数f(x)的最大值;
(2)当m=1时,设点A、B是函数y=f(x)(x∈[0,1])的图象上任意不同的两点,求证:直线AB的斜率kAB<2.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年陕西省宝鸡中学高三(上)第二次月考数学试卷(文科)(解析版) 题型:解答题

已知函数
(1)当m=2时,求曲线y=f(x)在点(0,0)处的切线方程;
(2)讨论函数y=f(x)的单调性;
(3)若函数f(x)既有极大值,又有极小值,且当0≤x≤4m时,恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案