【题目】若动点到定点与定直线的距离之和为4.
(1)求点的轨迹方程,并画出方程的曲线草图;
(2)记(1)得到的轨迹为曲线,问曲线上关于点()对称的不同点有几对?请说明理由.
【答案】(1);作图见解析;(2)答案不唯一,具体见解析.
【解析】
(1)设,由题意,分类讨论,可得点的轨迹方程,并画出方程的曲线草图;
(2)当或显然不存在符合题意的对称点,当时,注意到曲线关于轴对称,至少存在一对(关于轴对称的)对称点,再研究曲线上关于对称但不关于轴对称的对称点即可.
解:(1)设,由题意
①:当时,有,
化简得:
②:当时,有,
化简得:(二次函数)
综上所述:点的轨迹方程为(如图):
(2)当或显然不存在符合题意的对称点,
当时,注意到曲线关于轴对称,至少存在一对(关于轴对称的)对称点.
下面研究曲线上关于对称但不关于轴对称的对称点
设是轨迹上任意一点,
则,
它关于的对称点为,
由于点在轨迹上,
所以,
联立方程组(*)得
,
化简得
①当时,,此时方程组(*)有两解,
即增加有两组对称点.
②当时,,此时方程组(*)只有一组解,
即增加一组对称点.(注:对称点为,)
③
当时,,此时方程组(*)有两解为,,
没有增加新的对称点.
综上所述:记对称点的对数为.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,对于点、直线,我们称为点到直线的方向距离.
(1)设椭圆上的任意一点到直线,的方向距离分别为、,求的取值范围.
(2)设点、到直线的方向距离分别为、,试问是否存在实数,对任意的都有成立?若存在,求出的值;不存在,说明理由.
(3)已知直线和椭圆,设椭圆的两个焦点,到直线的方向距离分别为、满足,且直线与轴的交点为、与轴的交点为,试比较的长与的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了更好地支持“中小型企业”的发展,某市决定对部分企业的税收进行适当的减免,某机构调查了当地的中小型企业年收入情况,并根据所得数据画出了样本的频率分布直方图,下面三个结论:
①样本数据落在区间的频率为0.45;
②如果规定年收入在500万元以内的企业才能享受减免税政策,估计有55%的当地中小型企业能享受到减免税政策;
③样本的中位数为480万元.
其中正确结论的个数为( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆,定义椭圆C的“相关圆”E为:.若抛物线的焦点与椭圆C的右焦点重合,且椭圆C的短轴长与焦距相等.
(1)求椭圆C及其“相关圆”E的方程;
(2)过“相关圆”E上任意一点P作其切线l,若l 与椭圆交于A,B两点,求证:为定值(为坐标原点);
(3)在(2)的条件下,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,已知点M,N的极坐标分别为,直线l的方程为.
(1)求以线段MN为直径的圆C的极坐标方程;
(2)求直线l被(1)中的圆C所截得的弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】冬季历来是交通事故多发期,面临着货运高危运行、恶劣天气频发、包车客运监管漏洞和农村交通繁忙等四个方面的挑战.全国公安交管部门要认清形势、正视问题,针对近期事故暴露出来的问题,强薄羽、补短板、堵漏洞,进一步推动五大行动,巩固扩大五大行动成果,全力确保冬季交通安全形势稳定.据此,某网站推出了关于交通道路安全情况的调查,通过调查年龄在的人群,数据表明,交通道路安全仍是百姓最为关心的热点,参与调查者中关注此类问题的约占80%,现从参与调查并关注交通道路安全的人群中随机选出100人,并将这100人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.
(1)求这100人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(2)现在要从年龄较大的第4,5组中用分层抽样的方法抽取8人,再从这8人中随机抽取3人进行问卷调查,求第4组恰好抽到2人的概率;
(3)若从所有参与调查的人(人数很多)中任意选出3人,设其中关注交通道路安全的人数为随机变量X,求X的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在坐标原点,且经过点,它的一个焦点与抛物线E:的焦点重合,斜率为k的直线l交抛物线E于A、B两点,交椭圆于C、D两点.
(1)求椭圆的方程;
(2)直线l经过点,设点,且的面积为,求k的值;
(3)若直线l过点,设直线,的斜率分别为,,且,,成等差数列,求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com