分析 由条件利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得tanA的值.
解答 解:角A是△ABC的一个内角,若sinA+cosA=$\frac{7}{13}$,则1+2sinAcosA=$\frac{49}{169}$,
∴2sinAcosA=-$\frac{120}{169}$<0,∴A为钝角,sinA>0,cosA<0,|sinA|>|cosA|,tanA<-1.
再根据 sin2A+cos2A=1,求得sinA=$\frac{12}{13}$,cosA=-$\frac{5}{13}$,∴tanA=$\frac{sinA}{cosA}$=$\frac{12}{5}$,
故答案为:-$\frac{12}{5}$.
点评 本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 必要不充分条件 | B. | 充分不必要条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com