精英家教网 > 高中数学 > 题目详情
精英家教网四棱锥S-ABCD中,底面ABCD为矩形,∠SCD=90°,∠SBC=90°,二面角S-CD-B为60°,且AB=SC=4.
(1)求证:平面SAB⊥平面ABCD;
(2)求三棱锥C-ASD的高(即以△SAD为底的三棱锥的高).
分析:(1)由已知中四棱锥S-ABCD中,底面ABCD为矩形,∠SCD=90°,∠SBC=90°,二面角S-CD-B为60°,我们易得SCB为二面角S-CD-B的平面角,SB⊥平面ABCD,进而根据面面垂直的判定定理,即可得到平面SAB⊥平面ABCD
(2)连接AC,由(1)的结论,我们可以得到AD⊥平面SAB,即三棱锥C-ASD可以看作AD为高,三角形DAC为底,求出底面积及高,代入棱锥体积公式,即可得到答案.
解答:解:(1)证明:精英家教网∵DC⊥BCDC⊥SC∴DC⊥平面SCB
∴DC⊥SB且∠SCB为二面角S-CD-B的平面角,则∠SCB=60°
又∵SB⊥BC∴SB⊥平面ABCD
又∵SB?平面SAB∴平面SAB⊥平面ABCD
(2)连接AC
∵SB⊥平面ABCD∴SB⊥AD又AD⊥AB
∴AD⊥平面SAB∴AD⊥SA
在Rt△ASD1中AS=
AB2+SB2
=
42+(2
3
)
2
=2
7
,AD=BC=2
由VC-SAD=VS-ACD∴AD×AS•h=AD×CD×SB
h=
4
21
7
∴三棱锥C-ASD的高为
4
21
7
点评:本题考查的知识点是平面与平面垂直的判定,棱锥的体积,其中熟练掌握空间直线与直线、直线与平面、平面与平面垂直之间的互相转换,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四棱锥S-ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=
2
,DC=SD=2,点M在侧棱SC上,∠ABM=60°
(I)证明:M是侧棱SC的中点;
(2)求二面角S-AM-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥S-ABCD中,底面ABCD为平行四边形,SA⊥平面ABCD,AB=2,AD=1,SB=
7
,∠BAD=120°,E在棱SD上,且SE=3ED.
(I)求证:SD⊥平面AEC;
(II)求直线AD与平面SCD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在底面是菱形的四棱锥S-ABCD中,SA=AB=2,SB=SD=2
2

(1)证明:BD⊥平面SAC;
(2)问:侧棱SD上是否存在点E,使得SB∥平面ACE?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,SD=AD,DF⊥SB垂足为F,E是SD的中点.
(Ⅰ)证明:SA∥平面BDE;
(Ⅱ)证明:平面SBD⊥平面DEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD中.ABCD为矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=
3
AD.E为CD上一点,且CE=3DE.
(1)求证:AE⊥平面SBD;
(2)M、N分别在线段CD、SB上的点,是否存在M、N,使MN⊥CD且MN⊥SB,若存在,确定M、N的位置;若不存在,说明理由.

查看答案和解析>>

同步练习册答案