【题目】正三角形的边长为2,将它沿高翻折,使点与点间的距离为1,此时四面体外接球的表面积是________________.
【答案】.
【解析】分析:三棱锥的三条侧棱,底面是正三角形,它的外接球就是它扩展为正三棱柱的外接球,求出正三棱柱的点中心连线的中点到顶点的距离,就是求的半径,然后求球的表面积即可.
详解:根据题意可知三棱锥的三条侧棱,
底面是正三角形,它的外接球就是它扩展为正三棱柱的外接球,
求出正三棱柱的点中心连线的中点到顶点的距离,即为球的半径,
正三棱柱中,底面边长为1,棱柱的高为,
由题意可得,三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,
所以正三棱柱的外接球的球心为,外接球的半径为,表面积为,
球心到底面的距离为1,底面中心到底面三角形的顶点的距离为,
所以球的半径为,
所以外接球的表面积为.
科目:高中数学 来源: 题型:
【题目】2014福建)在下列向量组中,可以把向量 =(3,2)表示出来的是( )
A.=(0,0), =(1,2)
B.=(﹣1,2), =(5,﹣2)
C.=(3,5), =(6,10)
D.=(2,﹣3), =(﹣2,3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);
场次 | 投篮次数 | 命中次数 | 场次 | 投篮次数 | 命中次数 |
主场1 | 22 | 12 | 客场1 | 18 | 8 |
主场2 | 15 | 12 | 客场2 | 13 | 12 |
主场3 | 12 | 8 | 客场3 | 21 | 7 |
主场4 | 23 | 8 | 客场4 | 18 | 15 |
主场5 | 24 | 20 | 客场5 | 25 | 12 |
(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;
(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;
(3)记 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX与 的大小(只需写出结论).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4—4:坐标系与参数方程]
在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求的直角坐标方程;
(2)若与有且仅有三个公共点,求的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程;
(Ⅰ)求曲线的普通方程和曲线的直角坐标方程;
(Ⅱ)设为曲线上的动点,求点到曲线上的距离的最小值的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:
奖级 | 摸出红、蓝球个数 | 获奖金额 |
一等奖 | 3红1蓝 | 200元 |
二等奖 | 3红0蓝 | 50元 |
三等奖 | 2红1蓝 | 10元 |
其余情况无奖且每次摸奖最多只能获得一个奖级.
(1)求一次摸奖恰好摸到1个红球的概率;
(2)求摸奖者在一次摸奖中获奖金额x的分布列与期望E(x).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四面体A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2 .M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.
(1)证明:PQ∥平面BCD;
(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com