精英家教网 > 高中数学 > 题目详情

(本小题12分) 已知二次函数轴有两个交点,若,且.
(Ⅰ)求此二次函数的解析式
(Ⅱ)若在闭区间的最大值为,求的解析式及其最大值

(Ⅰ)
(Ⅱ)的最大值为4

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数),若,且对任意实数)不等式0恒成立.
(Ⅰ)求实数的值;
(Ⅱ)当[-2,2]时,是单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求的值及的表达式;
(Ⅱ)隔热层修建多厚时,总费用达到最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)当
(2)当,并画出其图象;
(3)求方程的解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
某漁业公司年初用98万元购买一艘捕魚船,第一年各种支出费用12万元,以后每年都增加
4万元,每年捕魚收益50万元.
(1)该公司第几年开始获利?
(2)若干年后,有两种处理方案:
①年平均获利最大时,以26万元出售该渔船;
②总纯收入获利最大时,以8万元出售渔船.
问哪种处理方案最合算?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
画出函数的图像,并指出它的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数f(x)= 的值域    .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15分)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间(天)的函数,且销售量近似满足函数(件),价格近似满足函数
(元)。
(1)试写出该种商品的日销售额函数表达式;
(2)求该种商品的日销售额的最大值与最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

医学上为了研究传染病在传播的过程中病毒细胞的生长规律及其预防措施,将个病毒细胞注入到一只小白鼠的体内进行试验.在试验过程中,得到病毒细胞的数量与时间的关系记录如下表:

时间(小时)
1
2
3
4
5
6
7
病毒细胞总数(个)

2
4
8
16
32
64
已知该种病毒细胞在小白鼠体内超过个时,小白鼠将死亡,但有一种药物对杀死此种病毒有一定效果,用药后,即可杀死其体内的大部分病毒细胞.
(1)在16小时内,写出病毒细胞的总数与时间的函数关系式;
(2)为了使小白鼠在实验过程中不死亡,最迟应在何时注射该种药物.(精确到整数,

查看答案和解析>>

同步练习册答案