分析 (I)若向量$\overrightarrow a$与向量$\overrightarrow b$夹角为锐角,则满足:$\left\{\begin{array}{l}\overrightarrow a•\overrightarrow b>0\\ m+3m≠0\end{array}\right.$,解出即可得出.
(II)令f(x)=log2(x+2),则f(x)在x∈[0,2]上是增函数.故当x0∈[0,2]时,f(x0)≥f(0);则当命题p为假时$m≤\frac{1}{2}$,即可得出.
解答 解:(I)若向量$\overrightarrow a$与向量$\overrightarrow b$夹角为锐角,则满足:$\left\{\begin{array}{l}\overrightarrow a•\overrightarrow b>0\\ m+3m≠0\end{array}\right.$…(2分)
即$\left\{\begin{array}{l}1-3{m^2}>0\\ m≠0\end{array}\right.$
所以当q为真时,有:$m∈(-\frac{{\sqrt{3}}}{3},0)∪(0,\frac{{\sqrt{3}}}{3})$…(4分)
(II)令f(x)=log2(x+2),则f(x)在x∈[0,2]上是增函数.
故当x0∈[0,2]时,f(x0)≥f(0)=1,
即$m>\frac{1}{2}$…(6分)
则当命题p为假时$m≤\frac{1}{2}$…(7分)
若(?p)∧q为真,则?p为真且q为真.…(8分)
从而$\left\{\begin{array}{l}m≤\frac{1}{2}\\-\frac{{\sqrt{3}}}{3}<m<0或0<m<\frac{{\sqrt{3}}}{3}\end{array}\right.$…(10分)
∴$-\frac{{\sqrt{3}}}{3}<m<0$或$0<m≤\frac{1}{2}$
∴实数m的取值范围为:$(-\frac{{\sqrt{3}}}{3},0)∪(0,\frac{1}{2}]$…(12分)
点评 本题考查了向量夹角公式、函数的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 75° | B. | 60° | C. | 45° | D. | 30° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | 2 | C. | 1 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 5 | B. | 7 | C. | 4+4$\sqrt{2}$ | D. | 9 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com