精英家教网 > 高中数学 > 题目详情

【题目】如图所示,正三角形的边长为2 分别在三边上, 的中点,

(Ⅰ)当时,求的大小;

(Ⅱ)求的面积的最小值及使得取最小值时的值.

【答案】时, 取最小值

【解析】试题分析:本题主要考查正弦定理、直角三角形中正切的定义、两角和的正弦公式、倍角公式、三角形面积公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,在中, ,而在中,利用正弦定理,用表示,在中,利用正弦定理,用表示,代入到式中,再利用两角和的正弦公式展开,解出,利用特殊角的三角函数值求角;第二问,将第一问得到的代入到三角形面积公式中,利用两角和的正弦公式和倍角公式化简表达式,利用正弦函数的有界性确定的最小值.

试题解析:在中,由正弦定理得,在中,由正弦定理得.由,得,整理得,所以

2

时, 取最小值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)= aR,e为自然对数的底数)

(Ⅰ)当a=1时,求f(x)的单调区间;

(Ⅱ)若函数f(x)在 上无零点,求a的最小值;

(Ⅲ)若对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥, 平面平面,.

1)求证:平面

2)求直线与平面所成角的正弦值;

3)在棱上是否存在点,使得平面?若存在, 的值;若不存在, 说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知定点,动点满足,设点的曲线为,直线交于两点.

1)写出曲线的方程,并指出曲线的轨迹;

2)当,求实数的取值范围;

3)证明:存在直线,满足,并求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)(2017·长春市二模)如图,在四棱锥中,底面是菱形,平面,点分别为中点.

(1)求证:直线平面

(2)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,有三根针和套在一根针上的个金属片,按下列规则,把金属片从一根针上全部移到另一根针上.

(1)每次只能移动一个金属片;

(2)在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.

个金属片从1号针移到3号针最少需要移动的次数记为,则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记实数中的最大数为,最小数为.的三边边长分别为,且,定义的倾斜度为.

1)若为等腰三角形,则_____

2)设,则的取值范围是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:

X

1

2

3

4

5

频率

a

02

045

b

c

1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求abc的值;

2)在(1)的条件下,将等级系数为43件日用品记为,等级系数为52件日用品记为,现从5件日用品中任取两件(假定每件日用品被取出的可能性相同),求这两件日用品的等级系数恰好相等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为F,经过点F的直线与抛物线C交于不同的两点AB的最小值为4.

1)求抛物线C的方程;

2)已知PQ是抛物线C上不同的两点,若直线恰好垂直平分线段PQ,求实数k 的取值范围.

查看答案和解析>>

同步练习册答案