精英家教网 > 高中数学 > 题目详情
(2013•江苏一模)已知m为实数,直线l1:mx+y+3=0,l2:(3m-2)x+my+2=0,则“m=1”是“l1∥l2”的
充分不必要
充分不必要
条件(请在“充要、充分不必要、必要不充分、既不充分也不必要”中选择一个填空).
分析:把m=1代入可判l1∥l2”成立,而“l1∥l2”成立可推出m=1,或m=2,由充要条件的定义可得答案.
解答:解:当m=1时,方程可化为l1:x+y+3=0,l2:x+y+2=0,
显然有“l1∥l2”成立;
而若满足“l1∥l2”成立,则必有
m2-(3m-2)=0
2m-3(3m-2)≠0

解得m=1,或m=2,不能推出m=1,
故“m=1”是“l1∥l2”的充分不必要条件.
故答案为:充分不必要
点评:本题考查直线的一般式方程与直线的平行关系,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•江苏一模)已知cos(75°+α)=
1
3
,则cos(30°-2α)的值为
7
9
7
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)已知Sn,Tn分别是等差数列{an},{bn}的前n项和,且
Sn
Tn
=
2n+1
4n-2
,(n∈N+)则
a10
b3+b18
+
a11
b6+b15
=
41
78
41
78

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)已知F1,F2是双曲线的两个焦点,以线段F1F2为边作正△MF1F2,若边MF1的中点在此双曲线上,则此双曲线的离心率为
3
+1
3
+1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)若对于给定的正实数k,函数f(x)=
k
x
的图象上总存在点C,使得以C为圆心,1为半径的圆上有两个不同的点到原点O的距离为2,则k的取值范围是
(0,
9
2
(0,
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)已知全集U={1,2,3,4,5,6},A={1,3,5},B={1,2,3,5},则?U(A∩B)=
{2,4,6}
{2,4,6}

查看答案和解析>>

同步练习册答案