精英家教网 > 高中数学 > 题目详情
6.已知正方形ABCD的边长为1,M是正方形ABCD四边上或内部的动点,则$\overrightarrow{AB}$•$\overrightarrow{AM}$的取值范围是[0,1].

分析 如图所示,由数量积的意义可得:当点M位于边AD时,$\overrightarrow{AB}$•$\overrightarrow{AM}$取得最小值;当点M位于边BC时,$\overrightarrow{AB}$•$\overrightarrow{AM}$取得最大值.即可得出.

解答 解:如图所示,
由数量积的意义可得:
当点M位于边AD时,$\overrightarrow{AB}$•$\overrightarrow{AM}$取得最小值0;
当点M位于边BC时,$\overrightarrow{AB}$•$\overrightarrow{AM}$取得最大值:1.
∴$\overrightarrow{AB}$•$\overrightarrow{AM}$的取值范围是[0,1].
故答案为:[0,1].

点评 本题考查了向量数量积运算性质、分类讨论方法,考查了数形结合方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=(3x-y)2+(3-x+y)2,x∈[-1,1].
(Ⅰ)求f(x)的最大值;
(Ⅱ)关于x的方程f(x)=2y2有解,求实数y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.直线3x+4y=b与圆x2+y2-2x-2y+1=0相交,则b的取值范围为(2,12).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个几何体的三视图如图所示,那么这个几何体的表面积是(  ) 
A.$16+2\sqrt{3}$B.$16+2\sqrt{5}$C.$20+2\sqrt{3}$D.$20+2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线l斜率为$\frac{1}{2}$,倾斜角为α,将l绕它与x轴的交点逆时针方向旋转α后所得直线的斜率为k,则将k值执行如图所示程序后,输出S值为(  )
A.$\frac{4}{3}$B.-$\frac{4}{3}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.为了了解中学生的身高情况,对某中学同龄的若干女生身高进行测量,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右五个小组的频率分别为0.017,0.050,0.100,0.133,0.300,第三个小组的频数为6.
(1)参加这次测试的学生数是多少?
(2)试问这组身高数据的中位数和众数分别在哪个小组的范围内,且在众数这个小组内人数是多少?
(3)如果本次测试身高在157cm以上(包括157cm)的为良好,试估计该校女生身高良好率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题p:“?x∈N+,2x≥2”的否定为(  )
A.?x∈N+,2x<2B.?x∉N+,2x<2C.?x∉N+,2x<2D.?x∈N+,2x<2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设z1=a+2i(a∈R),z2=3-4i.
(1)若z1•z2为纯虚数,求a的值;
(2)若$\frac{z_1}{z_2}$在复平面内对应的点位于第二象限,求a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知{an}为等差数列,且a3+a4=3(a1+a2),a2n-1=2an
(1)求数列{an}的通项公式;
(2)设数列{bn}的前n项和为Sn,且Sn=m-$\frac{{{a_n}+1}}{2^n}$(m为常数).令cn=b2n (n∈N*),求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案