精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,半焦距为,过点轴、轴的垂线,垂足分别点,且四边形的面积为2.

1)求椭圆的标准方程;

2)已知经过点的直线与椭圆交于两点,设直线与直线的倾斜角分别为,且,求的取值范围.

【答案】1;(2

【解析】

(1)四边形的面积为2.得到,离心率,联解可得;

2)直线的方程为,与椭圆方程联解,设点,直线与椭圆交于两点得,由,利用根与系数关系代入化简可得,再求出的表达式,利用两角和的正切公式可得解.

1)∵四边形的面积为,∴.

∵椭圆的离心率为,∴.

联系①②,解得..

∴椭圆的标准方程为.

2)由(1)得.当直线垂直于轴时,直线的方程为

此时直线与椭圆相切,与题意不符;

当直线的斜率存在时,设直线的方程为.

.

设点,则

所以

.

.

.

.

又∵,∴的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】写算,是一种格子乘法,也是笔算乘法的一种,用以区别筹算与珠算,它由明代数学家吴敬在其撰写的《九章算法比类大全》一书中提出,是从天元式的乘法演变而来.例如计算,将被乘数89计入上行,乘数65计入右行.然后以乘数65的每位数字乘被乘数89的每位数字,将结果计入相应的格子中,最后从右下方开始按斜行加起来,满十向上斜行进一,如图,即得5785.类比此法画出的表格,若从表内(表周边数据不算在内)任取一数,则恰取到奇数的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学调查防疫期间学生居家每天锻炼时间情况,从高一、高二年级学生中分别随机抽取100人,由调查结果得到如下的频率分布直方图:

(Ⅰ)写出频率分布直方图(高一)中的值;记高一、高二学生100人锻炼时间的样本的方差分别为,试比较的大小(只要求写出结论);

(Ⅱ)估计在高一、高二学生中各随机抽取1人,恰有一人的锻炼时间大于20分钟的概率;

(Ⅲ)由频率分布直方图可以认为,高二学生锻炼时间服从正态分布.其中近似为样本平均数近似为样本方差,且每名学生锻炼时间相互独立,设表示从高二学生中随机抽取10人,其锻炼时间位于的人数,求的数学期望.

注:①同一组数据用该区间的中点值作代表,计算得

②若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为评估设备生产某种零件的性能,从设备生产该零件的流水线上随机抽取100个零件为样本,测量其直径后,整理得到下表:

经计算,样本的平均值,标准差,以频率值作为概率的估计值.

(I)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行判定(表示相应事件的概率):

.

判定规则为:若同时满足上述三个式子,则设备等级为甲;若仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部都不满足,则等级为了.试判断设备的性能等级.

(Ⅱ)将直径尺寸在之外的零件认定为是“次品”.

①从设备的生产流水线上随机抽取2个零件,求其中次品个数的数学期望

②从样本中随意抽取2个零件,求其中次品个数的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: 经过点P(2,1),且离心率为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设O为坐标原点,在椭圆短轴上有两点MN满足,直线PM、PN分别交椭圆于A,B.探求直线AB是否过定点,如果经过定点请求出定点的坐标,如果不经过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分,1小问7分,2小问5分

设函数

1处取得极值,确定的值,并求此时曲线在点处的切线方程;

2上为减函数,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20191020日,第六届世界互联网大会发布了15世界互联网领先科技成果,其中有5项成果均属于芯片领域,分别为华为高性能服务器芯片鲲鹏920”、清华大学面向通用人工智能的异构融合天机芯片特斯拉全自动驾驶芯片、寒武纪云端AI芯片、思元270”、赛灵思“Versal自适应计算加速平台.现有3名学生从这15世界互联网领先科技成果中分别任选1项进行了解,且学生之间的选择互不影响,则至少有1名学生选择芯片领域的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建建立极坐标系,曲线C的极坐标方程为

求曲线C的直角坐标方程与直线l的极坐标方程;

若直线与曲线C交于点不同于原点,与直线l交于点B,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=﹣x+|2x+1|,不等式f(x)<2的解集是M.

(Ⅰ)求集合M;

(Ⅱ)设a,b∈M,证明:|ab|+1>|a|+|b|.

查看答案和解析>>

同步练习册答案