精英家教网 > 高中数学 > 题目详情
在棱长为的正方体中,点是正方体棱上一点(不包括棱的端点),
①若,则满足条件的点的个数为________
②若满足的点的个数为,则的取值范围是________
     

试题分析:①时,,结合椭圆定义知,动点轨迹为一个以2为长轴长,正方体中心为中心,为焦点的椭圆体.
⑴当椭圆体与有交点时,则由对称性知椭圆体必与有交点.
,则
因为,所以由于,所以此时有六个交点.
⑵当椭圆体与有交点时,则由对称性知椭圆体必与有交点.
,则
因为所以由于,所以此时无有六个交点.
说明:当时,椭圆体与正方体交于除外的六个顶点.
②若则动点不存在.若则动点轨迹为线段,满足条件的点的个数为2.因此即动点轨迹为一个以2为长轴长,正方体中心为中心,为焦点的椭圆体.由①分析可知,要使得满足条件的点的个数为6,须使得.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

椭圆x2+my2=1的焦点在y轴上,长轴长是短轴长的两倍,则m的值为(  )
A.B.C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,点在椭圆上.
(1)求椭圆C的方程;
(2)设椭圆的左右顶点分别是A、B,过点的动直线与椭圆交于M,N两点,连接AN、BM相交于G点,试求点G的横坐标的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点与椭圆的左焦点重合,则的值为(   )
A.-8B.-16C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(5分)(2011•福建)设圆锥曲线r的两个焦点分别为F1,F2,若曲线r上存在点P满足|PF1|:|F1F2|:|PF2|=4:3:2,则曲线r的离心率等于(        )
A.B.或2C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1、F2分别为双曲线C:的左、右焦点,A为双曲线的左顶点,以F1F2为直径的圆交双曲线的某条渐近线于M、N两点,且满足MAN=120o,则该双曲线的离心率为(       )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线与椭圆相交于两点,点是线段上的一点,且点在直线上.
(1)求椭圆的离心率;
(2)若椭圆的焦点关于直线的对称点在单位圆上,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知焦点在轴的椭圆 的左、右焦点分别为,直线过右焦点,和椭圆交于两点,且满足,则椭圆的标准方程为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,过点且离心率为.

(1)求椭圆的方程;
(2)已知是椭圆的左右顶点,动点M满足,连接AM交椭圆于点P,在x轴上是否存在异于A、B的定点Q,使得直线BP和直线MQ垂直.

查看答案和解析>>

同步练习册答案