【题目】设函数.
(1)当时,求函数在区间上的值域;
(2)设函数的定义域为I,若,且,则称为函数的“壹点”,已知在区间上有4个不同的“壹点”,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】已知数集(,)具有性质P;对任意的i,j(),与两数中至少有一个属于A.
(1)分别判断数集与是否具有性质P,并说明理由;
(2)证明:,且;
(3)当时,若,求集合A.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点,轴的非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为,为曲线上的动点,与轴、轴的正半轴分别交于,两点.
(1)求线段中点的轨迹的参数方程;
(2)若是(1)中点的轨迹上的动点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数和都是定义在集合上的函数,对于任意的,都有成立,称函数与在上互为“互换函数”.
(1)函数与在上互为“互换函数”,求集合;
(2)若函数 (且)与在集合上互为“互换函数”,求证:;
(3)函数与在集合且上互为“互换函数”,当时,,且在上是偶函数,求函数在集合上的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业生产、两种产品,生产每产品所需的劳动力和煤、电消耗如下表:
产品品种 | 劳动力(个) | 煤 | 电 |
已知生产产品的利润是万元,生产产品的利润是万元.现因条件限制,企业仅有劳动力个,煤,并且供电局只能供电,则企业生产、两种产品各多少吨,才能获得最大利润?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com