精英家教网 > 高中数学 > 题目详情
设各项均不为0的数列{an}的前n项之乘积是bn,且λan+bn=1(λ∈R,λ>0)
(1)探求an、bn、bn-1之间的关系式;
(2)设λ=1,求证{
1
bn
}是等差数列;
(3)设λ=2,求证:b1+b2+…+bn
2
3
分析:(1)利用各项均不为0的数列{an}的前n项之乘积是bn,且λan+bn=1,即可探求an、bn、bn-1之间的关系式;
(2)当n≥2时,将an=
bn
bn-1
代入an+bn=1中,即可证得结论;
(3)求出数列的通项,利用放缩法及等比数列的求和公式,即可证得结论.
解答:(1)解:由数列{an}的前n项之乘积是bn,得a1=b1,an=
bn
bn-1
(2分)
(2)证明:令n=1,得λa1+b1=1,又a1=b1,∴b1=
1
λ+1

∵λ=1,∴b1=
1
2
  (3分)
当n≥2时,将an=
bn
bn-1
代入an+bn=1中,得
bn
bn-1
+bn=1,则
1
bn
=
1
bn-1
+1  (4分)
∴数列{
1
bn
}是以2为首项,以1为公差的等差数列
(3)解:∵2a1+b1=1,a1=b1∴3b1=1,b1=
1
3
  (5分)
当λ=2时,将an=
bn
bn-1
代入2an+bn=1中,得2
bn
bn-1
+bn=1
1
bn
=2
1
bn-1
+1  (6分)
1
bn
+1=2(
1
bn-1
+1)(7分)
∴{
1
bn
+1}是以
1
b1
+1=4为首项,以2为公比的等比数列 (8分)
1
bn
+1=2n+1
bn=
1
2n+1-1

1
2n+1-1
1
2n+1-2
=
1
2
1
2n-1

bn
1
2
bn-1
(n≥2)
∴b1+b2+…+bn≤b1+
1
2
b1+…+
1
2n-1
b1=b1
1-
1
2n
1-
1
2
<b1
1
1
2
=
2
3

∴b1+b2+…+bn
2
3
点评:本题考查数列与不等式的综合,考查等差数列的证明,考查不等式的证明,考查放缩法的运用,有一定的难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-ax+a(x∈R)同时满足:①不等式f(x)≤0的解集有且只有一个元素;②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立,设数列{an}的前n项和Sn=f(n).
(I)求函数f(x)的表达式;
(II)设各项均不为0的数列{bn}中,所有满足bi•bi+1<0的整数i的个数称为这个数列{bn}的变号数,令bn=1-
aan
(n∈N*),求数列{bn}的变号数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•肇庆二模)数列{an}的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=2x+1上,n∈N*
(1)若数列{an}是等比数列,求实数t的值;
(2)设bn=nan,在(1)的条件下,求数列{bn}的前n项和Tn
(3)设各项均不为0的数列{cn}中,所有满足ci•ci+1<0的整数i的个数称为这个数列{cn}的“积异号数”,令cn=
bn-4bn
(n∈N*),在(2)的条件下,求数列{cn}的“积异号数”.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科)已知二次函数f(x)=x2-ax+a(a>0,x∈R),不等式f(x)≤0的解集有且只有一个元素,设数列{an}的前n项和Sn=f(n)(n∈N*)
(1)求数列{an}的通项公式;
(2)设bn=
an
3n
,求数列{bn}的前n项和Tn
(3)设各项均不为0的数列{cn}中,所有满足cm•cm+1<0的正整数m的个数,称为这个数列{cn}的变号数,若cn=1-
a
an
(n∈N*)
,求数列{cn}的变号数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•茂名二模)数列{an}的前n项和Sn,a1=t,点(Sn,an+1)在直线y=2x+1上,(n=1,2,…)
(1)若数列{an}是等比数列,求实数t的值;
(2)设bn=(n+1)•log3an+1,数列{
1
bn
}前n项和Tn.在(1)的条件下,证明不等式Tn<1;
(3)设各项均不为0的数列{cn}中,所有满足ci•ci+1<0的整数i的个数称为这个数列{cn}的“积异号数”,在(1)的条件下,令cn=
nan-4
nan
(n=1,2,…),求数列{cn}的“积异号数”

查看答案和解析>>

同步练习册答案