袋中装有号码分别为1,2,3,4,5,6的六个小球,设号码为n的球的重量为n2-6n+12克,这些球等可能地从袋里取出(不受重量、号码的影响).
(1)如果任意取出1球,求其重量大于号码数的概率;
(2)如果不放回地任意取出2球,求它们重量相等的概率.
【答案】
分析:(1)任意取出1球,共有6种等可能的方法,要求其重量大于号码数的概率,我们只要根据号码为n的球的重量为n
2-6n+12克,构造关于n的不等式,解不等式即可得到满足条件的基本事件的个数,代入古典概型公式即可求解.
(2)我们要先计算出不放回地任意取出2球的基本事件总个数,然后根据重量相等构造方程解方程求出满足条件的基本事件的个数,代入古典概型计算公式即可求解.
解答:解:(1)由题意,任意取出1球,共有6种等可能的方法.
由不等式n
2-6n+12>n,得n>4或n<3(3分)
所以n=1,n=2,n=5或,=6,于是所求概率为
=
(6分)
(2)从6个球中任意取出2个球,共有15种等可能的方法,列举如下:
(1,2)(1,3)(1,4)(1,5)(1,6)
(2,3)(2,4)(2,5)(2,6)(3,4)
(3,5)(3,6)(4,5)(4,6)(5,6)(8分)
设第n号与第m号的两个球的重量相等,
则有n
2-6n+12=m
2-6m+12
∴(n-m)(n+m-6)=0
∵n≠m,
∴n+m=6
∴
,或
(10分)
即满足条件的基本事件有(1,5),(2,4)两种
故所求概率为
(12分)
点评:古典概型要求所有结果出现的可能性都相等,强调所有结果中每一结果出现的概率都相同.弄清一次试验的意义以及每个基本事件的含义是解决问题的前提,正确把握各个事件的相互关系是解决问题的关键.解决问题的步骤是:计算满足条件的基本事件个数,及基本事件的总个数,然后代入古典概型计算公式进行求解.