精英家教网 > 高中数学 > 题目详情

【题目】过直角坐标平面xOy中的抛物线y2=2px(p>0)的焦点F作一条倾斜角为的直线与抛物线相交于AB两点.

(1)用p表示线段AB的长;

(2)若,求这个抛物线的方程.

【答案】(1)4p(2)y2=4x.

【解析】试题分析:(1)先根据点斜式写出直线方程,再与抛物线联立方程组,利用韦达定理得两根之和,最后根据抛物线定义求线段AB的长;(2)先根据向量数量积化简,再根据点斜式设直线方程,与抛物线联立方程组,利用韦达定理代入关系式,解出p

试题解析:解:(1)抛物线的焦点为F,过点F且倾斜角为的直线方程是yx.设A(x1y1),B(x2y2),联立

x2-3px=0,∴x1x2=3px1x2,∴ABx1x2p=4p.

(2)由(1)知x1x2x1x2=3p

y1y2x1x2 (x1x2)+=-p2

OA―→·OB―→=x1x2y1y2p2=-=-3,

解得p2=4,

p=2.

这个抛物线的方程为y2=4x.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的短轴长为,右焦点为,点是椭圆上异于左、右顶点的一点.

(1)求椭圆的方程;

(2)若直线与直线交于点,线段的中点为,证明:点关于直线的对称点在直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设锐角△ABC的三内角A、B、C所对边的边长分别为a、b、c,且 a=1,B=2A,则b的取值范围为(
A.(
B.(1,
C.( ,2)
D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,

(1)求的单调区间;

(2)设函数,若存在,对任意的,总有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产某种水杯,每个水杯的原材料费、加工费分别为30元、m(m为常数,且2m3),设每个水杯的出厂价为x(35x41),根据市场调查,水杯的日销售量与ex(e为自然对数的底数)成反比例,已知每个水杯的出厂价为40元时,日销售量为10个.

(1)求该工厂的日利润y()与每个水杯的出厂价x()的函数关系式;

(2)当每个水杯的出厂价为多少元时,该工厂的日利润最大,并求日利润的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中点,若E是AB的中点,P是△ABC(包括边界)内任一点.则 的取值范围是(
A.[﹣6,6]
B.[﹣9,9]
C.[0,8]
D.[﹣2,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一次猜奖游戏中,1,2,3,4四扇门里摆放了 四件奖品(每扇门里仅放一件).甲同学说:1号门里是,3号门里是;乙同学说:2号门里是,3号门里是;丙同学说:4号门里是,2号门里是;丁同学说:4号门里是,3号门里是.如果他们每人都猜对了一半,那么4号门里是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则x+y的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:不等式(m1)x2(m1)x2>0的解集是R,命题qsin xcos x>m.如果对于任意的xR,命题p是真命题且命题q为假命题,求m的范围.

查看答案和解析>>

同步练习册答案