B
分析:①、设f(x)=C则(1+λ)C=0,当λ=-1时,可以取遍实数集,可判断①;
②、假设f(x)=x是一个“λ-同伴函数”,则x+λ+λx=0,则有λ+1=λ=0,解方程可判断②;
③、假设f(x)=x
2是一个“λ-同伴函数”,则(x+λ)
2+λx
2=0,则有λ+1=2λ=λ
2=0,解方程可判断③;
④、令x=0,可得f(
)=-
f(0).若f(0)=0,f(x)=0有实数根;若f(0)≠0,f(
)•f(0)=-
(f(0))2<0.可得f(x)在(0,
)上必有实根,可判断④
解答:①、设f(x)=C是一个“λ-同伴函数”,则(1+λ)C=0,当λ=-1时,可以取遍实数集,因此f(x)=0不是唯一一个常值“λ-同伴函数”,故①错误
②、假设f(x)=x是一个“λ-同伴函数”,则x+λ+λx=0对任意实数x成立,则有λ+1=λ=0,而此式无解,所以f(x)=x不是“λ-伴随函数”,故②正确;
③、假设f(x)=x
2是一个“λ-同伴函数”,则(x+λ)
2+λx
2=0,
即(1+λ)x
2+2λx+λ
2=0对任意实数x成立,所以λ+1=2λ=λ
2=0,而此式无解,所以f(x)=x
2不是一个“λ-同伴函数”.故③错误
④、令x=0,得f(
)+
f(0)=0.所以f(
)=-
f(0).
若f(0)=0,显然f(x)=0有实数根;若f(0)≠0,f(
)•f(0)=-
(f(0))2<0.
又因为f(x)的函数图象是连续不断,所以f(x)在(0,
)上必有实数根.
因此任意的“
-同伴函数”必有根,即任意“
-同伴函数”至少有一个零点.故④正确.
故答案为:B.
点评:本题考查的知识点是函数的概念及构成要素,函数的零点,正确理解f(x)是λ-同伴函数的定义,是解答本题的关键.