精英家教网 > 高中数学 > 题目详情
10.函数f(x)=sin2x+1 的周期为(  )
A.B.C.πD.$\frac{π}{2}$

分析 利用降幂公式化简已知函数解析式可得f(x)=$\frac{3}{2}$$-\frac{1}{2}$cos2x,根据三角函数的周期性及其求法即可求得周期.

解答 解:∵f(x)=sin2x+1=$\frac{1-cos2x}{2}$+1=$\frac{3}{2}$$-\frac{1}{2}$cos2x,
∴周期T=$\frac{2π}{2}$=π.
故选:C.

点评 本题主要考查了降幂公式,三角函数的周期性及其求法的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.sin20°cos10°-cos160°sin10°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.实数m取怎样的值时,复数z=m-3+(m2-2m-15)i是:
(1)实数?
(2)虚数?
(3)纯虚数?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$=(sinx+cosx,$\sqrt{2}$cosx ),$\overrightarrow{b}$=(cosx-sin x,$\sqrt{2}$sinx),x∈[-$\frac{π}{8}$,0].
(1)求|$\overrightarrow{a}$|的取值范围;
(2)若$\overrightarrow{a}$•$\overrightarrow{b}$=1,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为$\frac{{3\sqrt{2}}}{2}$.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设点P(x0,y0)为直线l上一定点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点,求直线AB的方程,并证明直线AB过定点Q.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,cosA=$\frac{2\sqrt{5}}{5}$,cosB=$\frac{3\sqrt{10}}{10}$,最长的边长为$\sqrt{5}$,则最短的边长为(  )
A.2B.$\frac{\sqrt{5}}{2}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设集合A{x|x2+2x-8≤0},B={x|$\frac{2x}{1-x}≤-1$},
(1)求集合A和集合B;
(2)求(∁RA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列各式的值:
(1)2-3•16${\;}^{\frac{3}{4}}$;
(2)$\root{4}{2}$•$\root{4}{8}$;
(3)($\frac{3}{7}$)5•($\frac{16}{81}$)0÷($\frac{9}{7}$)4
(4)2-3•45•0.255

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.把函数g(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象向左平移$\frac{π}{3}$个单位长度得到函数y=f(x)的图象(如图).
(1)求函数g(x)的解析式;
(2)若g(x0)=-$\frac{11}{14}$,x0∈($\frac{2π}{3}$,$\frac{3π}{4}$),求sin2x0的值.

查看答案和解析>>

同步练习册答案