精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)求函数的单调区间

(2)试问:函数图像上是否存在不同两点使得处的切线平行于直线若存在求出的坐标若不存在说明理由.

【答案】(1)上单调递增,在上单调递减;(2)证明见解析.

【解析】试题分析:

(1)结合函数的解析式可得据此可得上单调递增,在上单调递减.

(2)假设存在两点,不妨设,则,且函数在处的切线斜率,据此整理计算有,则利用导函数研究函数的性质可得在内不存在,使得 ,则函数图象上是不存在满足题意的点.

试题解析:

(1)由,又

故,当时,,当

上单调递增,在上单调递减

(2)假设存在两点,不妨设,则

=

在函数图象处的切线斜率

得:

化简得:

,则,上式化为:,即

若令

上单调递增,

这表明在内不存在,使得 .

综上,函数图象上是不存在不同两点,使得 处的切线平行于直线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,三棱柱A1B1C1 - ABC中,侧棱AA1丄底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是

A. CC1与B1E是异面直线 B. AC丄平面ABB1A1

C. A1C1∥平面AB1E D. AE与B1C1为异面直线,且AE丄B1C1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若m﹣ <x (m∈Z),则m叫做离实数x最近的整数,记作{x},即m={x},关于函数f(x)=x﹣{x}的四个命题:①定义域为R,值域为(﹣ ]; ②点(k,0)是函数f(x)图象的对称中心(k∈Z);③函数f(x)的最小正周期为1; ④函数f(x)在(﹣ ]上是增函数.上述命题中,真命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为;1小时以上且不超过2小时离开的概率分别为;两人滑雪时间都不会超过3小时.

(1)求甲、乙两人所付滑雪费用相同的概率;

(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点 ,椭圆 )的离心率为 是椭圆 的右焦点,直线 的斜率为 为坐标原点.

(1)求 的方程;

(2)设过点 的动直线 相交于 两点,当 的面积最大时,求 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a∈R,f(x)= 为奇函数.
(1)求函数F(x)=f(x)+2x﹣ ﹣1的零点;
(2)设g(x)=2log2 ),若不等式f1(x)≤g(x)在区间[ ]上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①如果是两条直线,且,那么平行于经过的任何平面;

②如果直线和平面满足,那么直线与平面内的任何直线平行;

③如果直线和平面满足,那么

④如果直线和平面满足,那么

⑤如果平面满足,那么.

其中正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:)的分组区间为,将其按从左到右的顺序分别编号为第一组,第二组,,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组没有疗效的有6人,则第三组中有疗效的人数为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,若m<n,且f(m)=f(n),则n﹣m的取值范围是(
A.[3﹣2ln2,2)
B.[3﹣2ln2,2]
C.[e﹣1,2]
D.[e﹣1,2)

查看答案和解析>>

同步练习册答案