已知点F是抛物线C:的焦点,S是抛物线C在第一象限内的点,且|SF|=
.
(Ⅰ)求点S的坐标;
(Ⅱ)以S为圆心的动圆与轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;
①判断直线MN的斜率是否为定值,并说明理由;
②延长NM交轴于点E,若|EM|=
|NE|,求cos∠MSN的值.
(Ⅰ);(Ⅱ)①详见解析,②
解析试题分析:(1)由抛物线定义等于点
到准线
的距离,可求点
的横坐标,代入抛物线方程求点
的纵坐标;(2)由已知直线
斜率互为相反数,可设其中一条
斜率为
,写出直线方程并与抛物线联立之得关于
的二次方程(其中有一根为1),或
的一元二次方程(其中有一根为1),再利用韦达定理并结合直线方程,求出点
的坐标,然后用
代替
得点
的坐标,代入斜率公式看是否定值即可;(3)依题意
,利用向量式得三点坐标间的关系,从而求
,进而可求直线
的方程,再确定
两点坐标,在
中利用余弦定理求
.
试题解析:(1)设(
>0),由已知得F
,则|SF|=
,∴
=1,∴点S的坐标是(1,1);
(2)①设直线SA的方程为
由得
∴
,∴
.
由已知SA=SB,∴直线SB的斜率为,∴
∴
②设E(t,0),∵|EM|=|NE|,∴
,
∴
,则
∴
∴直线SA的方程为
,则
,同理
,∴
考点:1、抛物线定义;2、韦达定理;3、余弦定理.
科目:高中数学 来源: 题型:解答题
已知椭圆的方程为
,双曲线
的左、右焦点分别为
的左、右顶点,而
的左、右顶点分别是
的左、右焦点,
(1)求双曲线的方程;
(2)若直线与椭圆
及双曲线
都恒有两个不同的交点,且
与
的两个交点A和B满足
(其中0为原点),求k的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,直线l与抛物线y2=4x相交于不同的A、B两点.
(1)如果直线l过抛物线的焦点,求·
的值;
(2)如果·
=-4,证明直线l必过一定点,并求出该定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线的离心率为
,右准线方程为
,
(1)求双曲线C的方程;
(2)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在以双曲线C的实轴长为直径的圆上,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率
,连接椭圆的四个顶点得到的菱形的面积为4.
(1)求椭圆的方程;
(2)设直线与椭圆相交于不同的两点A,B。已知点A的坐标为
。若
,求直线
的倾斜角。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(1)求椭圆的方程;
(2)若过点(2,0)的直线与椭圆
相交于两点
,设
为椭圆上一点,且满足
(
为坐标原点),当
时,求实数
取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
矩形的中心在坐标原点,边
与
轴平行,
=8,
=6.
分别是矩形四条边的中点,
是线段
的四等分点,
是线段
的四等分点.设直线
与
,
与
,
与
的交点依次为
.
(1)求以为长轴,以
为短轴的椭圆Q的方程;
(2)根据条件可判定点都在(1)中的椭圆Q上,请以点L为例,给出证明(即证明点L在椭圆Q上).
(3)设线段的
(
等分点从左向右依次为
,线段
的
等分点从上向下依次为
,那么直线
与哪条直线的交点一定在椭圆Q上?(写出结果即可,此问不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知圆心坐标为的圆
与
轴及直线
均相切,切点分别为
、
,另一圆
与圆
、
轴及直线
均相切,切点分别为
、
.
(1)求圆和圆
的方程;
(2)过点作
的平行线
,求直线
被圆
截得的弦的长度;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆过点
,离心率为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点且斜率为
(
)的直线
与椭圆
相交于
两点,直线
、
分别交直线
于
、
两点,线段
的中点为
.记直线
的斜率为
,求证:
为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com