精英家教网 > 高中数学 > 题目详情
设f(x)是R上的偶函数,且在[0,+∞)上是增函数,又f(1)=0,则满足f(log2x)>0的x的取值范围是(  )
A、(2,+∞)
B、(0,
1
2
C、(0,
1
2
)∪(2,+∞)
D、(
1
2
,2)
考点:奇偶性与单调性的综合
专题:函数的性质及应用
分析:根据函数奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.
解答: 解:∵f(x)是R上的偶函数,且在[0,+∞)上是增函数,又f(1)=0,
∴不等式f(log2x)>0等价为f(|log2x|)>f(1),
即|log2x|>1,
则log2x>1或log2x<-1,
解得x>2或x<
1
2

故选:B
点评:本题主要考查不等式的解法,根据函数奇偶性和单调性之间的关系将不等式进行转化是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
y2
a2
+
x2
b2
=1(a>b>0)的焦距为4且过点(
2
,-2).
(1)求椭圆C方程;
(2)过椭圆上焦点的直线与椭圆C分别交于点E,F,求
OE
OF
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设α∈(0,
π
2
),则
sin3α
cosα
+
cos3α
sinα
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,公差d≠0,an≠0,(n∈N*),且akx2+2ak+1x+ak+2=0(k∈N*
(1)求证:当k取不同自然数时,此方程有公共根;
(2)若方程不同的根依次为x1,x2,…,xn,…,求证:数列{
1
1+xn
}为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

y=
120000
a
+1200a+20000(a>0)的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a是实数,函数f(x)=ax2+2(a-1)x-2lnx.
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)设定义在D上的函数y=g(x)在点P(x0,y0)处的切线方程为l:y=h(x),当x≠x0时,若
g(x)-h(x)
x-x0
<0在D内恒成立,则称点P为函数y=g(x)的“平衡点”.当a=1时,试问函数y=f(x)是否存在“平衡点”?若存在,请求出“平衡点”的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

当实数x,y满足
x+2y-4≤0
x-y-1≤0
x≥1
时,1≤x+ay≤5恒成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M的方程为x2+y2-2x-3=0,求圆心M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在Rt△ABC中,∠C=90°,BC=2,AC=4.DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.
(Ⅰ)求证:BC⊥平面A1DC;
(Ⅱ)若CD=2,求平面A1BE与平面A1BC所成二面角的大小.

查看答案和解析>>

同步练习册答案