精英家教网 > 高中数学 > 题目详情

【题目】司机在开机动车时使用手机是违法行为,会存在严重的安全隐患,危及自己和他人的生命.为了研究司机开车时使用手机的情况,交警部门调查了100名机动车司机,得到以下统计:在55名男性司机中,开车时使用手机的有40人,开车时不使用手机的有15人;在45名女性司机中,开车时使用手机的有20人,开车时不使用手机的有25人.

(1)完成下面的2×2列联表,并判断是否有99.5%的把握认为开车时使用手机与司机的性别有关;

(2)以上述的样本数据来估计总体,现交警部门从道路上行驶的大量机动车中随机抽检3辆,记这3辆车中司机为男性且开车时使用手机的车辆数为X,若每次抽检的结果都相互独立,求X的分布列和数学期望EX).

参考公式与数据:,其中n=a+b+c+d

【答案】(1)有的把握认为开车时使用手机与司机的性别有关;(2)分布列见解析,

【解析】

1)根据题意填写2×2列联表,计算观测值,对照临界值得出结论;

2)求出任意抽取1辆车中司机为男性且开车时使用手机的概率,知X的可能取值,且X服从二项分布,计算对应的概率,写出X的分布列,计算数学期望值.

(1)填写2×2列联表,如下;

开车时使用手机

开车时不使用手机

合计

男性司机人数

40

15

55

女性司机人数

20

25

45

合计

60

40

100

根据数表,计算=≈8.257.879

所以有99.5%的把握认为开车时使用手机与司机的性别有关;

(Ⅱ)由题意,任意抽取1辆车中司机为男性且开车时使用手机的概率是

的可能取值为:0,1,2,3,且

可得

所以

所以的分布列为:

0

1

2

3

数学期望为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业生产某种商品吨,此时所需生产费用为万元,当出售这种商品时,每吨价格为万元,这里为常数,.

1)为了使这种商品的生产费用平均每吨最低,那么这种商品的产量应为多少吨?

2)如果生产出来的商品能全部卖完,当产量是120吨时企业利润最大,此时出售价格是每吨160万元,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线在点处的切线经过坐标原点,求的值;

(2)若存在极小值,使不等式恒成立,求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(1)求函数的单调区间;

(2)若函数存在两个极值点,且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

讨论的单调性;

,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E:,若椭圆上一点与其中心及长轴一个端点构成等腰直角三角形.

Ⅰ)求椭圆E的离心率;

Ⅱ)如图,若直线l与椭圆相交于ABAB是圆的一条直径,求椭圆E的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】滨海市政府今年加大了招商引资的力度,吸引外资的数量明显增加.一外商计划在滨海市投资两个项目,总投资20亿元,其中甲项目的10年收益额(单位:亿元)与投资额(单位:亿元)满足,乙项目的10年收益额(单位:亿元)与投资额(单位:亿元)满足,并且每个项目至少要投资2亿元.设两个项目的10年收益额之和为.

(1)求

(2)如何安排甲、乙两个项目的投资额,才能使这两个项目的10年收益额之和最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,定义f1(x)=f(x),fn+1(x)=f[fn(x)](n∈N*),已知偶函数g(x)的定义域为(﹣∞,0)∪(0,+∞),g(1)=0,当x>0且x≠1时,g(x)=f2018(x).

(1)求f2(x),f3(x),f4(x),f2018(x);

(2)求出函数y=g(x)的解析式;

(3)若存在实数a、b(a<b),使得函数g(x)在[a,b]上的值域为[mb,ma],求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数).

(1)求的直角坐标方程;

(2)若曲线截直线所得线段的中点坐标为,求的斜率.

查看答案和解析>>

同步练习册答案