精英家教网 > 高中数学 > 题目详情
(2013•许昌三模)有下列四个命题:
①函数y=x+
1
4x
(x≠0)的值域是[1,+∞);
②平面内的动点P到点F(-2,3)和到直线l:2x+y+1=0的距离相等,则P的轨迹是抛物线;
③直线AB与平面α相交于点B,且AB与α内相交于点C的三条互不重合的直线CB、CE、CF所成的角相等,则AB⊥α;
④若f(x)=x2+bx+c(b,c∈R),则f(
x1+x2
2
)≤
1
2
[f(x1)+f(x2)].
其中正确的命题的编号是
③④
③④
分析:①利用基本不等式证明.②利用抛物线的定义判断.③利用线面垂直的判定定理或性质定理判断.④利用凸凹函数的性质判断.
解答:解:①当x>0时,y=x+
1
4x
≥2
x?
1
4x
=1

当x<0时,y=x+
1
4x
=-[(-x)+
1
-4x
]≤-2
(-x)?
1
-4x
=-1

所以函数的值域是[1,+∞)∪(-∞,-1],所以①错误.
②因为点F(-2,3)在直线2x+y+1=0,所以点P的轨迹不是抛物线,是过点F且垂直于直线l的直线.所以②错误.
③若AB不垂直α,当AB与直线CB、CE、CF所成的角相等,则必有CB∥CE/CF,与直线CB、CE、CF互不重合,矛盾,
所以假设不成立,所以必有AB⊥α.所以③正确.
④因为满足f(
x1+x2
2
)≤
1
2
[f(x1)+f(x2)]的函数为凹函数,所以二次函数是凹函数,所以④正确.
故正确的命题的编号是③④.
故答案为:③④.
点评:本题主要考查了命题的真假判断,综合性较强.要求对相关知识要熟练理解和掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•许昌三模)已知f(x)=x3+ax2-a2x+2.
(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1)处的切线方程;
(Ⅱ)若a≠0 求函数f(x)的单调区间;
(Ⅲ)若不等式2xlnx≤f′(x)+a2+1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)已知圆C的方程为x2+y2=4,过点M(2,4)作圆C的两条切线,切点分别为A,B,直线AB恰好经过椭圆T:
x2
a2
+
y2
b2
=1(a>b>0)
的右顶点和上顶点.
(1)求椭圆T的方程;
(2)已知直线l与椭圆T相交于P,Q两不同点,直线l方程为y=kx+
3
(k>0)
,O为坐标原点,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)如图,多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AB=CD=1,AC=
3
,AD=DE=2
,G为AD的中点.
(1)求证;AC⊥CE;
(2)在线段CE上找一点F,使得BF∥平面ACD,并给予证明;
(3)求三棱锥VG-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)己知集合M={(x,y)|x2+2y2=3},N={(x,y)|y=mx+b}.若对所有m∈R,均有M∩N≠∅,则b的取值范同是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌三模)设向量
a
=(
3
sinθ+cosθ+1,1),
b
=(1,1),θ∈[
π
3
3
],m是向量
a
 在向量
b
向上的投影,则m的最大值是(  )

查看答案和解析>>

同步练习册答案