分析 设出动点P的坐标,分P的横坐标小于等于0和大于0两种情况讨论,横坐标小于等于0时明显看出P的轨迹是x轴负半轴,x大于0时直接由题意列式化简整理即可.
解答 解:设P(x,y),
由P到定点F(1,0)的距离为$\sqrt{({x-1)}^{2}+{y}^{2}}$,
P到y轴的距离为|x|,
当x≤0时,P的轨迹为y=0(x≤0);
当x>0时,又动点P到定点F(1,0)的距离比P到y轴的距离大1,
列出等式:$\sqrt{{(x-1)}^{2}+{y}^{2}}$-|x|=1
化简得y2=4x(x≥0),为焦点为F(1,0)的抛物线.
则动点P的轨迹方程为:y2=4x或$\left\{\begin{array}{l}y=0\\ x≤0\end{array}\right.$.
点评 本题考查了抛物线的方程,考查了分类讨论的数学思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com