精英家教网 > 高中数学 > 题目详情

【题目】设正整数数列满足.

(1)若,请写出所有可能的的取值;

(2)求证:中一定有一项的值为13

(3)若正整数m满足当时,中存在一项值为1,则称m为“归一数”,是否存在正整数m,使得m都不是“归一数”?若存在,请求出m的最小值;若不存在,请说明理由.

【答案】1可能取得值为:,(2)证明见解析,(3)不存在。

【解析】

1)利用数列的递推关系,分类讨论,即可得出可能取得的值.

2)首先设中最小的奇数为,根据题意得到:,再对分奇数和偶数讨论即可.

3)由题知:中一定有,设,得到…….均为的倍数.故不存在正整数m,使得m都不是“归一数”.

1)由题知:数列各项均为正整数,

,解得:(舍去).

,解得:(舍去).

,解得:.

时,,解得:.

时,,解得:(舍去).

可能取得值为:.

2)因为为正整数数列,设中最小的奇数为

所以为偶数.

所以,此时可能为奇数或偶数.

为奇数时,则,解得:.

所以.

为偶数时,则,解得:.

所以.

综上所述:中一定有一项的值为.

3)由(2)知:中一定有,由题知:

因为

所以.

,则…….均为的倍数.

故不存在正整数m,使得m都不是“归一数”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12)

已知函数(其中a是实数).

(1)求的单调区间;

(2)若设,且有两个极值点 ,求取值范围.(其中e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数fx)的单调递增区间;

2)将函数fx)的图象向右平移个单位,再将所得图象的橫坐标缩短到原来的一半,纵坐标不变,得到新的函数ygx),当时,求gx)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P在直线l:y=x-1,若存在过点P的直线交抛物线A,B两点,|PA|=|AB|,则称点P为“正点”,那么下列结论中正确的是( )

A.直线l上的所有点都是“正点”

B.直线l上仅有有限个点是“正点”

C.直线l上的所有点都不是“正点”

D.直线l上有无穷多个点(但不是所有的点)是“正点”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆和双曲线的公共焦点,是他们的一个公共点,且,则椭圆和双曲线的离心率的倒数之和的最大值为___.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数R).

1)当时,求函数的单调区间;

2)若对任意实数,当时,函数的最大值为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为(t为参数,0).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为

(Ⅰ)写出曲线C的直角坐标方程;

(Ⅱ)若直线l与曲线C交于A,B两点,且AB的长度为2,求直线l的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问某地100名高中学生在选择座位时是否挑同桌,得到如下列联表:

男生

女生

合计

挑同桌

30

40

70

不挑同桌

20

10

30

总计

50

50

100

1)从这50名男生中按是否挑同桌采取分层抽样的方法抽取一个容量为5的样本,现从这5名学生中随机选取3名做深度采访,求这3名学生中恰有2名挑同桌的概率;

2)根据以上列联表,是否有以上的把握认为性别与在选择座位时是否挑同桌有关?

下面的临界值表供参考:

0.050

0.010

0.001

3.841

6.635

10.828

(参考公式:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加.下表是某购物网站20181月~8月促销费用(万元)和产品销量(万件)的具体数据.

月份

1

2

3

4

5

6

7

8

促销费用

2

3

6

10

13

21

15

18

产品销量

1

1

2

3

3.5

5

4

4.5

1)根据数据可知具有线性相关关系,请建立的回归方程(系数精确到0.01);

2)已知6月份该购物网站为庆祝成立1周年,特制定奖励制度:以(单位:件)表示日销量,,则每位员工每日奖励100元;,则每位员工每日奖励150元,,则每位员工每日奖励200.现已知该网站6月份日销量服从正态分布,请你计算某位员工当月奖励金额总数大约多少元(当月奖励金额总数精确到百分位).

参考数据:,其中分别为第个月的促销费用和产品销量,.

参考公式:①对于一组数据,其回归方程的斜率和截距的最小二乘估计分别为;②若随机变量服从正态分布,则.

查看答案和解析>>

同步练习册答案