精英家教网 > 高中数学 > 题目详情

【题目】某地需要修建一条大型输油管道通过720千米宽的荒漠地带,该段输油管道两端的输油站已建好,余下工程只需要在该段两端已建好的输油站之间铺设输油管道和等距离修建增压站(又称泵站).经预算,修建一个增压站的工程费用为108万元,铺设距离为千米的相邻两增压站之间的输油管道费用为万元.设余下工程的总费用为万元.

1)试将表示成关于的函数;

2)需要修建多少个增压站才能使总费用最小?

【答案】1;(219

【解析】

1)由题可知需要新建个增压站,即可求得余下工程的总费用,得到函数的解析式;

2)由(1)可得,利用导数求出的单调性与最值,即可得解.

解:(1)设需要新建个增压站,且,即

关于的函数关系式为

2)由(1)知,

,得,解得

时,在区间内为减函数,

时,在区间内为增函数,

所以处取得最小值,

此时,即需新建19个增压站才能使最小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点是抛物线的焦点,点上,且

1)求的值;

2)若直线经过点且与交于(异于)两点,证明:直线与直线的斜率之积为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知高中学生的数学成绩与物理成绩具有线性相关关系,在一次考试中某班7名学生的数学成绩与物理成绩如下表:

数学成绩

88

83

117

92

108

100

112

物理成绩

94

91

108

96

104

101

106

1)求这7名学生的数学成绩的极差和物理成绩的平均数;

2)求物理成绩对数学成绩的线性回归方程;若某位学生的数学成绩为110分,试预测他的物理成绩是多少?

下列公式与数据可供参考:

用最小二乘法求线性回归方程的系数公式:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大提出,加快水污染防治,建设美丽中国.根据环保部门对某河流的每年污水排放量(单位:吨)的历史统计数据,得到如下频率分布表:

将污水排放量落入各组的频率作为概率,并假设每年该河流的污水排放量相互独立.

(1)求在未来3年里,至多1年污水排放量的概率;(2)该河流的污水排放对沿河的经济影响如下:当时,没有影响;当时,经济损失为10万元;当时,经济损失为60万元.为减少损失,现有三种应对方案:

方案一:防治350吨的污水排放,每年需要防治费3.8万元;

方案二:防治310吨的污水排放,每年需要防治费2万元;

方案三:不采取措施.

试比较上述三种文案,哪种方案好,并请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产某种型号的农机具零配件,为了预测今年7月份该型号农机具零配件的市场需求量,以合理安排生产,工厂对本年度1月份至6月份该型号农机具零配件的销售量及销售单价进行了调查,销售单价(单位:元)和销售量(单位:千件)之间的6组数据如下表所示:

月份

1

2

3

4

5

6

销售单价(元)

11.1

9.1

9.4

10.2

8.8

11.4

销售量(千件)

2.5

3.1

3

2.8

3.2

2.4

1)根据16月份的数据,求关于的线性回归方程(系数精确到0.01);

2)结合(1)中的线性回归方程,假设该型号农机具零配件的生产成本为每件3元,那么工厂如何制定7月份的销售单价,才能使该月利润达到最大?(计算结果精确到0.1

参考公式:回归直线方程

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与曲线分别交于两点,点的坐标为,则面积的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若函数存在最小值,且最小值大于,求实数的取值范围;

(Ⅱ)若存在实数,使得,求证:函数在区间上单调递增。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着共享单车的成功运营,更多的共享产品逐步走人大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷,某公司随机抽取1000人对共享产品是否对日常生活有益进行了问卷调查,并对参与调查的1000人中的性别以及意见进行了分类,得到的数据如下表所示:

总计

认为共享产品对生活有益

认为共享产品对生活无益

总计

1)求出表格中的值,并根据表中的数据,判断能否在犯错误的概率不超过的前提下,认为对共享产品的态度与性别有关系?

2)现按照分层抽样从认为共享产品对生活无益的人员中随机抽取6人,再从6人中随机抽取2人赠送超市购物券作为答谢,求恰有1人是女性的概率.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】O为坐标原点,动点M在椭圆C上,过Mx轴的垂线,垂足为N,点P满足.

1)求点P的轨迹方程;

(2)设点Q在直线上,且。证明:过点P且垂直于OQ的直线lC的左焦点F.

查看答案和解析>>

同步练习册答案