精英家教网 > 高中数学 > 题目详情
已知数列{an}(n∈N*),满足a1=1,a2=2,a3=3,a4=4,a5=5.当n≥5时,an+1=a1a2…an-1.若数列{bn}(n∈N*)满足bn=a1a2…an-a12-a22-…-an2.

(1)求b5;

(2)求证:当n≥5时,bn+1-bn=-1;

(3)求证:仅存在两个正整数m,使得a1a2…am=a12+a22+…+am2.

(1)解析:b5=1×2×3×4×5-12-22-32-42-52=65.

(2)证明:bn+1=a1a2…anan+1-a12-a22-…-an2-an+12

=a1a2…an(a1a2…an-1)-a12-a22-…-a2n-(a1a2…an-1)2

=a1a2…an-a12-a22-…-an2-1

=bn-1(n≥5),

∴bn+1-bn=-1(n≥5).

(3)证明:易算出b1=0,b2≠0,b3≠0,b4≠0,

当n≥5时,bn+1=bn-1,这表明{bn}从第5项开始,构成一个以b5=65为首项,公差为-1的等差数列.

由bm=b5+(m-5)×(-1)=65-m+5=0,解出m=70.

因此,满足a1a2…am=a12+a22+…+am2的正整数只有两个:

m=70或m=1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an-n}是等比数列,且满足a1=2,an+1=3an-2n+1,n∈N*.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•韶关模拟)已知数列{an} (n∈N*)满足:a1=1,an+1-sin2θ•an=cos2θ•cos2nθ,其中θ∈(0,
π
2
)

(1)当θ=
π
4
时,求{an}的通项公式;
(2)在(1)的条件下,若数列{bn}中,bn=sin
πan
2
+cos
πan-1
4
(n∈N*,n≥2)
,且b1=1.求证:对于?n∈N*,1≤bn
2
恒成立;
(3)对于θ∈(0,
π
2
)
,设{an}的前n项和为Sn,试比较Sn+2与
4
sin2
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}(n∈N*)是等比数列,且an>0,a1=2,a3=8,
(1)求数列{an}的通项公式;
(2)求证:
1
a1
+
1
a2
+
1
a3
+…+
1
an
<1

(3)设bn=2log2an+1,求数列{bn}的前100项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知数列{an}(n∈N*)的前n项和为Sn,数列{
Sn
n
}
是首项为0,公差为
1
2
的等差数列.
(1)求数列{an}的通项公式;
(2)设bn=
4
15
•(-2)an(n∈N*)
,对任意的正整数k,将集合{b2k-1,b2k,b2k+1}中的三个元素排成一个递增的等差数列,其公差为dk,求dk
(3)对(2)题中的dk,设A(1,5d1),B(2,5d2),动点M,N满足
MN
=
AB
,点N的轨迹是函数y=g(x)的图象,其中g(x)是以3为周期的周期函数,且当x∈(0,3]时,g(x)=lgx,动点M的轨迹是函数f(x)的图象,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知数列{an}(n∈N*)的前n项和为Sn,数列{
Sn
n
}
是首项为0,公差为
1
2
的等差数列.
(1)求数列{an}的通项公式;
(2)设bn=
4
15
•(-2)an(n∈N*)
,对任意的正整数k,将集合{b2k-1,b2k,b2k+1}中的三个元素排成一个递增的等差数列,其公差为dk,求证:数列{dk}为等比数列;
(3)对(2)题中的dk,求集合{x|dk<x<dk+1,x∈Z}的元素个数.

查看答案和解析>>

同步练习册答案