精英家教网 > 高中数学 > 题目详情

【题目】用数学归纳法证明命题“当n是正奇数时,xn+yn能被x+y整除”,在第二步的证明时,正确的证法是(  )
A.假设n=k(k∈N*)时命题成立,证明n=k+1时命题也成立
B.假设n=k(k是正奇数)时命题成立,证明n=k+1时命题也成立
C.假设n=k(k是正奇数)时命题成立,证明n=k+2时命题也成立
D.假设n=2k+1(k∈N)时命题成立,证明n=k+1时命题也成立

【答案】C
【解析】∵n为正奇数,当n=k时,k下面第一个正奇数应为k+2,而非k+1.故应选C.
【考点精析】解答此题的关键在于理解数学归纳法的步骤的相关知识,掌握

  1. :A.n=1(或成立,推的基B.n=k成立; C.n=k+1也成立,完成两步,就可以断定任何自然数(n>=,)结论都成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1+2sinxcosx+2cos2x.
(1)求f(x)递增区间;
(2)求f(x)的对称轴方程;
(3)求f(x)的最大值并写出取最大值时自变量x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,该几何体是由一个直三棱柱和一个正四棱锥组合而成,

(Ⅰ)证明:平面平面

(Ⅱ)求正四棱锥的高,使得二面角的余弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C上的点到点F(0,1)的距离比它到直线y=-3的距离小2

(1)求曲线C的方程

(2)过点F且斜率为K的直线L交曲线C于A、B两点,交圆F:于M、N两点(A、M两点相邻)若 ,当 时,求K的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC,F为CE上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=4 ﹣x的值域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求定积分的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(1+x)+lg(1﹣x).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设复数z满足.求z的值和|z-ω|的取值范围.

查看答案和解析>>

同步练习册答案