精英家教网 > 高中数学 > 题目详情

【题目】下面给出了四个类比推理:

1类比推出为三个向量则

2a,b为实数,则a=b=0类比推出为复数,若

3在平面内,三角形的两边之和大于第三边类比推出在空间中,四面体的任意三个面的面积之和大于第四个面的面积

4在平面内,过不在同一条直线上的三个点有且只有一个圆类比推出在空间中,过不在同一个平面上的四个点有且只有一个球

上述四个推理中,结论正确的个数有

A1个 B2个 C3个 D4个

【答案】B

【解析】

试题分析:容易验证结论是错误的事实上,若三个向量都是单位向量,其夹角不同则1不成立;若取,显然满足题设,即2不成立其中3)(4是正确的证明过程略故应选B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱锥中, 是边长为的等边三角形, 中点, 中点.

(Ⅰ)求证:平面平面

(Ⅱ)求直线与平面所成角的正弦值的大小;

(Ⅲ)在棱上是否存在一点,使得的余弦值为?若存在,指出点上的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,是等边三角形,是等腰直角三角形,,平面平面平面,点的中点,连接.

(1)求证:平面

(2),求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长为2的正方形,点分别中点,将分别沿起,使两点重合于.

求证

求四棱体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】种饮料每箱装有6听,经检测,箱中每的容量(单位:ml)如以下茎叶图所示.

)求这箱饮料的平均容量和容量的中位数;

)如果从这箱饮料中随机取出2听饮用,求取到的2听饮料中至少有1听的容量为250ml概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙、丙三个乒乓球协会的运动员人数分别为27918,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛.

)求应从这三个协会中分别抽取的运动员人数;

)将抽取的6名运动员进行编号,编号分别为,从这6名运动员中随机抽取2名参加双打比赛.

)用所给编号列出所有可能的结果;

)设为事件编号为的两名运动员至少有一人被抽到,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)讨论函数的单调区间与极值;

(Ⅱ)若恒成立,求的最大值;

(Ⅲ)在(Ⅱ)的条件下,且取得最大值时,设,且函数有两个零点,求实数的取值范围,并证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的参数方程,以为极点, 轴的非负半轴为极轴建立极坐标系.

(Ⅰ)求圆的极坐标方程;

(Ⅱ)直线的极坐标方程是,射线与圆的交点为,与直线的交点为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱,侧面.

)求证

二面角余弦值.

查看答案和解析>>

同步练习册答案