【题目】如图,已知四棱锥P—ABCD,底面ABCD是边长为4的菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(Ⅰ)求证:AE⊥PD;
(Ⅱ)若PA=4,求二面角E—AF—C的余弦值.
【答案】(Ⅰ)见解析 (Ⅱ).
【解析】
(Ⅰ)通过证明PA⊥AE和AE⊥AD,可证得AE⊥平面PAD,从而得证;
(Ⅱ)以A为坐标原点,建立如图所示的空间直角坐标系A-xyz,分别求面AEF和面AFC的法向量,利用法向量求解二面角即可.
(Ⅰ)证明:由四边形ABCD为菱形,∠ABC=60°,可得△ABC为正三角形.
因为E为BC的中点,所以AE⊥BC.又BC∥AD,因此AE⊥AD.
因为PA⊥平面ABCD,AE平面ABCD,所以PA⊥AE.
而PA平面PAD,AD平面PAD 且PA∩AD=A,
所以AE⊥平面PAD,又PD平面PAD.所以 AE⊥PD.
(Ⅱ)解:由(Ⅰ)知AE、AD、AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(2,—2,0),C(2,2,0),D(0,4, 0),P(0,0,4),E(2,0,0),F(),
所以=(2,0,0),=()
设平面AEF的法向量为=(),
则,因此
取,则=(0,2,—1),
因为BD⊥AC,BD⊥PA,PA∩AC=A,所以BD⊥平面AFC,故为平面AFC的法向量.
又(—2,6,0),所以cos<,>=.
因为二面角E—AF—C为锐角,所以所求二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心在原点,离心率等于,它的一个短轴端点恰好是抛物线的焦点.
(1)求椭圆C的方程;
(2)已知P(2,3)、Q(2,﹣3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,若直线AB的斜率为,求四边形APBQ面积的最大值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为, 上的动点到两焦点的距离之和为4,当点运动到椭圆的上顶点时,直线恰与以原点为圆心,以椭圆的离心率为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左右顶点分别为,若交直线于两点.问以为直径的圆是否过定点?若过定点,请求出该定点坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解市民对A,B两个品牌共享单车使用情况的满意程度,分别从使用A,B两个品牌单车的市民中随机抽取了100人,对这两个品牌的单车进行评分,满分60分.根据调查,得到A品牌单车评分的频率分布直方图,和B品牌单车评分的频数分布表:
根据用户的评分,定义用户对共享单车评价的“满意度指数”如下:
评分 | |||
满意度指数 |
(1)求对A品牌单车评价“满意度指数”为的人数;
(2)从对A,B两个品牌单车评分都在范围内的人中随机选出2人,求2人中恰有1人是A品牌单车的评分人的概率;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,直线不过原点且不平行于坐标轴,与交于、两点,线段的中点为.
(1)证明:直线的斜率与的斜率的乘积为定值;
(2)若过点,延长线段与交于点,四边形能否为平行四边形?若能,求出的方程;若不能,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知五边形是由直角梯形和等腰直角三角形构成,如图所示, , , ,且,将五边形沿着折起,且使平面平面.
(Ⅰ)若为中点,边上是否存在一点,使得平面?若存在,求的值;若不存在,说明理由;
(Ⅱ)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,透明塑料制成的长方体ABCD﹣A1B1C1D1内灌进一些水,固定容器底面一边BC于水平地面上,再将容器倾斜,随着倾斜度不同,有下面五个命题:
①有水的部分始终呈棱柱形;
②没有水的部分始终呈棱柱形;
③水面EFGH所在四边形的面积为定值;
④棱A1D1始终与水面所在平面平行;
⑤当容器倾斜如图(3)所示时,BEBF是定值.
其中所有正确命题的序号是 ____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体中,平面,垂足为H,给出下面结论:
①直线与该正方体各棱所成角相等;
②直线与该正方体各面所成角相等;
③过直线的平面截该正方体所得截面为平行四边形;
④垂直于直线的平面截该正方体,所得截面可能为五边形,
其中正确结论的序号为( )
A. ①③ B. ②④ C. ①②④ D. ①②③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com