精英家教网 > 高中数学 > 题目详情

(Ⅰ)当a=2时,解关于x的不等式:(x+a)(x-2a+1)<0
(Ⅱ)解关于x的不等式:(x-1)(x-2a+1)<0.

解:(1)当a=2时,
关于x的不等式:(x+a)(x-2a+1)<0等价转化为:
(x+2)(x-3)<0,
解方程(x+2)(x-3)=0,
得x1=-2,x2=3,
∴原不等式解集为:{ x|-2<x<3 };
(2)当a=1时,不等式:(x-1)(x-2a+1)<0
等价转化为(x-1)2<0,
∴原不等式解集为:∅;
当a>1时,解方程(x-1)(x-2a+1)=0,
得x1=1,x2=2a-1,
∴原不等式解集为:{x|1<x<2a-1};
当a<1时,解方程(x-1)(x-2a+1)=0,
得x1=1,x2=2a-1,
∴原不等式解集为{x|2a-1<x<1}.
分析:(1)当a=2时,关于x的不等式:(x+a)(x-2a+1)<0等价转化为(x+2)(x-3)<0,由此能求出原不等式解集.
(2)当a=1时,不等式(x-1)(x-2a+1)<0等价转化为(x-1)2<0,故原不等式解集为:∅;当a>1时,原不等式解集为:{x|1<x<2a-1};当a<1时,原不等式解集为{x|2a-1<x<1}.
点评:本题考查一元二次不等式的解法,是基础题.解题时要认真审题,仔细解答,注意分类讨论思想的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(Ⅰ)当a=2时,解关于x的不等式:(x+a)(x-2a+1)<0
(Ⅱ)解关于x的不等式:(x-1)(x-2a+1)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x+2)|x-a|
(1)当a=2时,解不等式f(x)>3x;
(2)当x∈[-1,1]时,f(x)<3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式|x-2|+|x-3|<a
(Ⅰ)当a=2时,解不等式;
(Ⅱ)如果不等式的解集为空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=ax-1(a>0且a≠1).
(1)求f(2)+f(-2)的值;
(2)求f(x)的解析式;
(3)当a=2时,解关于x的不等式-1<f(x-1)<4.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-a|+|x+2|(a为常数,且a∈R).
(I)若函数f(x)的最小值为2,求a的值;
(II)当a=2时,解不等式f(x)≤6.

查看答案和解析>>

同步练习册答案