精英家教网 > 高中数学 > 题目详情

【题目】已知实数a,b,c满足a,b,c∈R+
(Ⅰ)若ab=1,证明:( + 2≥4;
(Ⅱ)若a+b+c=3,且 + + ≤|2x﹣1|﹣|x﹣2|+3恒成立,求x的取值范围.

【答案】(Ⅰ)证明:∵ab=1,∴( + 2=a2+b2+2≥2ab+2=4; (Ⅱ)解:( + + 2≤(1+1+1)(a+b+c)=9,
+ + ≤|2x﹣1|﹣|x﹣2|+3恒成立,
∴9≤|2x﹣1|﹣|x﹣2|+3,
∴|2x﹣1|﹣|x﹣2|≥6,
x< ,不等式化为﹣2x+1+x﹣2≥6,∴x≤﹣7,∴x≤﹣7,
,不等式化为2x﹣1+x﹣2≥6,∴x≥3,不成立;
x>2,不等式化为2x﹣1﹣x+2≥6,∴x≥5,∴x≥5;
综上所述,x≤﹣7或x≥5
【解析】(Ⅰ)利用基本不等式,即可证明结论;(Ⅱ)( + + 2≤(1+1+1)(a+b+c)=9, + + ≤|2x﹣1|﹣|x﹣2|+3恒成立,可得9≤|2x﹣1|﹣|x﹣2|+3,分类讨论,即可求x的取值范围.
【考点精析】本题主要考查了不等式的证明的相关知识点,需要掌握不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2﹣ax+(3﹣a)lnx,a∈R.
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线2x﹣y+1=0垂直,求a的值;
(2)设f(x)有两个极值点x1 , x2 , 且x1<x2 , 求证:f(x1)+f(x2)>﹣5.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县共有户籍人口60万人,该县60岁以上、百岁以下的人口占比13.8%,百岁及以上的老人15人.现从该县60岁及以上、百岁以下的老人中随机抽取230人,得到如下频数分布表:

年龄段(岁)

[60,70)

[70,80)

[80,90)

[90,99)

人数(人)

125

75

25

5


(1)从样本中70岁及以上老人中采用分层抽样的方法抽取21人进一步了解他们的生活状况,则80岁及以上老人应抽多少人?
(2)从(1)中所抽取的80岁及以上的老人中,再随机抽取2人,求抽到90岁及以上老人的概率;
(3)该县按省委办公厅、省人民政府办公厅《关于加强新时期老年人优待服务工作的意见》精神,制定如下老年人生活补贴措施,由省、市、县三级财政分级拨款. ①本县户籍60岁及以上居民,按城乡居民养老保险实施办法每月领取55元基本养老金;
②本县户籍80岁及以上老年人额外享受高龄老人生活补贴.
(a)百岁及以上老年人,每人每月发放345元生活补贴;
(b)90岁及以上、百岁以下老年人,每人每月发放200元的生活补贴;
(c)80岁及以上、90岁以下老年人,每人每月发放100元的生活补贴.
试估计政府执行此项补贴措施的年度预算.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥P﹣ABC的各顶点都在同一球的面上,且PA⊥平面ABC,若球O的体积为 (球的体积公式为 R3 , 其中R为球的半径),AB=2,AC=1,∠BAC=60°,则三棱锥P﹣ABC的体积为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形ABCD中,AB∥DC,∠BAD=90°,AB=AD= CD=1,如图2,将△ABD沿BD折起来,使平面ABD⊥平面BCD,设E为AD的中点,F为AC上一点,O为BD的中点.
(Ⅰ)求证:AO⊥平面BCD;、
(Ⅱ)若三棱锥A﹣BEF的体积为 ,求二面角A﹣BE﹣F的余弦值的绝对值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , Sn=2an﹣3.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面四个命题中,真命题是( ) ①从匀速传递的产品生产流水线上,质检员每30分钟从生产流水线中抽取一件产品进行某项指标检测,这样的抽样方法是系统抽样;
②两个变量的线性相关程度越强,则相关系数的值越接近于1;
③两个分类变量X与Y的观测值κ2 , 若κ2越小,则说明“X与Y有关系”的把握程度越大;
④随机变量X~N(0,1),则P(|X|<1)=2P(X<1)﹣1.
A.①④
B.②④
C.①③
D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为3的正方体ABCD﹣A1B1C1D1中,A1E=CF=1.
(1)求两条异面直线AC1与D1E所成角的余弦值;
(2)求直线AC1与平面BED1F所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的不等式的解集为

(1)若,求的取值范围;

(2)若存在两个不相等负实数,使得,求实数的取值范围;

(3)是否存在实数,满足:“对于任意,都有,对于任意的,都有”,若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

同步练习册答案