精英家教网 > 高中数学 > 题目详情
17.用秦九韶算法求多项式f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8,当x=1时的值的过程中v3=7.9.

分析 先将多项式改写成如下形式:f(x)=((((5x+2)x+3.5)x-2.6)x+1.7)x-0.8,将x=1代入并依次计算v0,v1,v2,v3的值,即可得到答案.

解答 解:多项式f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8
=((((5x+2)x+3.5)x-2.6)x+1.7)x-0.8,
当x=1时,
v0=5,
v1=7,
v2=10.5,
v3=7.9,
故答案为:7.9

点评 本题考查的知识点是用辗转相除法计算最大公约数,秦九韶算法,其中熟练掌握辗转相除法及秦九韶算法的运算法则,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知椭圆C的方程为x2+$\frac{{y}^{2}}{4}$=1,定点N(0,1),过圆M:x2+y2=$\frac{4}{5}$上任意一点作圆M的一条切线交椭圆C于A,B两点.
(1)求证:$\overrightarrow{OA}•\overrightarrow{OB}=0$;
(2)若点P,Q在椭圆C上,直线PQ与x轴平行,直线PN交椭圆于另一个不同的点S,问:直线QS是否经过一个定点?若是,求出这个定点的坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知抛物线y2=2px的焦点与椭圆$\frac{x^2}{5}+{y^2}$=1的右焦点重合,则p的值为(  )
A.2B.-2C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数y=x+$\frac{a}{x}$(a>0)在区间$(0,\sqrt{a}]$上单调递减,在区间$[\sqrt{a},+∞)$上单调递增;函数$h(x)={({x^2}+\frac{1}{x})^3}+{(x+\frac{1}{x^2})^3}(x∈[\frac{1}{2},2])$
(1)请写出函数f(x)=x2+$\frac{a}{x^2}$(a>0)与函数g(x)=xn+$\frac{a}{x^n}$(a>0,n∈N,n≥3)在(0,+∞)的单调区间(只写结论,不证明);
(2)求函数h(x)的最值;
(3)讨论方程h2(x)-3mh(x)+2m2=0(0<m≤30)实根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在等比数列{an}中,a1=1,且a2是a1与a3-1的等差中项.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足${b_n}=\frac{{1+n(n+1){a_n}}}{n(n+1)}(n∈{N^*})$.求数列{bn}的前n项和$S_n^{\;}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列各函数中,最小值为2的是(  )
A.$y=x+\frac{1}{x}$,x≠0且x∈RB.$y=\frac{sinx}{2}+\frac{2}{sinx}$,x∈(0,π)
C.$y=\frac{{{x^2}+3}}{{\sqrt{{x^2}+2}}}$,x∈RD.y=ex+e-x,x∈R

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.等差数列{an},{bn}的前n项和分别为Sn,Tn,若$\frac{S_n}{T_n}=\frac{2n}{3n+1}$,则$\frac{{{a_{10}}}}{{{b_{10}}}}$=$\frac{19}{29}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知sinα-sinβ=$\frac{{\sqrt{6}}}{3},cosα-cosβ=\frac{{\sqrt{3}}}{3}$,则$|{cos\frac{α-β}{2}}$|=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知A,B,C是椭圆M:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$上的不同三点,其中点A的坐标为(2$\sqrt{3}$,0),BC过椭圆的中心,点C在第一象限,且满足∠BAC=90°,|BC|=2|AC|.
(1)求椭圆M的方程;
(2)过点(0,t)的直线l(斜率存在)与椭圆M交于P,Q两点,设D为椭圆与y轴负半轴的交点,且|DP|=|DQ|,求实数t的取值范围.

查看答案和解析>>

同步练习册答案