精英家教网 > 高中数学 > 题目详情
10.如图,椭圆 M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{1}{2}$,直线x=±a和y=±b所围成的矩形 A BCD的面积为$32\sqrt{3}$.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)若 P为椭圆M上任意一点,O为坐标原点,Q为线段OP的中点,求点Q的轨迹方程;
(Ⅲ)已知N(1,0),若过点 N的直线l交点Q的轨迹于E,F两点,且$-\frac{18}{7}≤\overrightarrow{{N}{E}}•\overrightarrow{{N}F}≤-\frac{12}{5}$,求直线l的斜率的取值范围.

分析 (Ⅰ)由已知可得$\frac{{a}^{2}-{b}^{2}}{{a}^{2}}=\frac{1}{4}$及$2a•2b=32\sqrt{3}$,解得a,b,c值,可得椭圆M的标准方程;
(Ⅱ)设P(x0,y0),Q(x,y),根据,Q为线段OP的中点,可得$\left\{\begin{array}{l}{x_0}=2x\\{y_0}=2y\end{array}\right.$,代入椭圆方程整理可得点Q的轨迹方程;
(Ⅲ)设直线l的方程为:y-0=k(x-1),联立直线方程,结合韦达定理,及向量数量积公式,可得直线l的斜率的取值范围.

解答 解:(I)$e=\frac{c}{a}=\frac{1}{2}⇒\frac{{{a^2}-{b^2}}}{a^2}=\frac{1}{4}$…①
矩形ABCD面积为$32\sqrt{3}$,即$2a•2b=32\sqrt{3}$…②
由①②解得:$a=4,b=2\sqrt{3}$,
∴椭圆M的标准方程是$\frac{x^2}{16}+\frac{y^2}{12}=1$.…(4分)
(Ⅱ)设P(x0,y0),Q(x,y),
则$\left\{\begin{array}{l}x=\frac{{0+{x_0}}}{2}\\ y=\frac{{0+{y_0}}}{2}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x_0}=2x\\{y_0}=2y\end{array}\right.$,
$又\frac{{{x_0}^2}}{16}+\frac{{{y_0}^2}}{12}=1$,
∴$\frac{{{{(2x)}^2}}}{16}+\frac{{{{(2y)}^2}}}{12}=1$
所以点Q的轨迹方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$…(7分)
( III)设直线l的方程为:y-0=k(x-1),即y=kx-k
由$\left\{\begin{array}{l}y=kx-k\\ 3{x^2}+4{y^2}=12\end{array}\right.得3{x^2}+4{k^2}{(x-1)^2}=12$
即(3+4k2)x2-8k2x+4k2-12=0…(8分)
设E(x1,y1),F(x2,y2),
则${x_1}+{x_2}=-\frac{{-8{k^2}}}{{3+4{k^2}}}=\frac{{8{k^2}}}{{3+4{k^2}}},{x_1}{x_2}=\frac{{4{k^2}-12}}{{3+4{k^2}}}$…(9分)
又$\overrightarrow{NE}=({x}_{1}-1,{y}_{1}),\overrightarrow{NF}=({x}_{2}-1,{y}_{2})$,
∴$\overrightarrow{NE}•\overrightarrow{NF}$
=(x1-1)(x2-1)+y1y2
=(x1-1)(x2-1)+k(x1-1)•k(x2-1)
=(1+k2)(x1-1)(x2-1)
=(1+k2)[x1x2-(x1+x2)+1]
=$(1+{k}^{2})[\frac{4{k}^{2}-12}{3+4{k}^{2}}-\frac{8{k}^{2}}{3+4{k}^{2}}+1]$
=$(1+{k}^{2})[\frac{-9}{3+4{k}^{2}}]$…(11分)
∴$-\frac{18}{7}≤(1+{k}^{2})[\frac{-9}{3+4{k}^{2}}]≤-\frac{12}{5}$,
即$\frac{12}{5}≤\frac{9(1+{k}^{2})}{3+4{k}^{2}}≤\frac{18}{7}$,
解得:$k∈[-\sqrt{3},-1]∪[1,\sqrt{3}]$…(13分)

点评 本题考查的知识点是椭圆的简单性质,椭圆的标准方程,轨迹方程,直线与圆锥曲线的关系,向量的数量积公式,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设a,b∈R+,求证:$\frac{a}{1+a}$+$\frac{b}{1+b}$>$\frac{a+b}{1+a+b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知曲线y=$\frac{1}{{e}^{x}+1}$,则曲线的切线中斜率最小的直线与两坐标轴所围成的三角形的面积为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.古代数学著作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据上题的已知条件,可求得该女子第3天所织布的尺数为(  )
A.$\frac{20}{31}$B.$\frac{3}{5}$C.$\frac{8}{15}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=loga(x2-ax+2)在[2,+∞)恒为正,则实数a的范围是(  )
A.0<a<1B.1<a<2C.1<a<$\frac{5}{2}$D.2<a<3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数 f(x)=ex+a,g(x)=|ln(-x)|,若x1,x2都满足f(x)=g(x),则(  )
A.x1•x2>eB.1<x1•x2<eC.0<x1x2<$\frac{1}{e}$D.$\frac{1}{e}<{x_1}{x_2}$<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=|lgx|,若$f(a)=f(b)=2f(\frac{a+b}{2})(0<a<b)$,则b所在区间为(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),P是椭圆上非x轴上的一点,△PF1F2中,若F2(右焦点)关于∠F1PF2的外角平分线的对称点Q,则点Q的轨迹是(  )
A.椭圆B.C.抛物线D.线段

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某厂家拟举行大型的促销活动,经测算某产品当促销费用为x万元时,销售量t万件满足t=5-$\frac{9}{2(x+1)}$(其中0≤x≤a2-3a+4,a为正常数),现假定生产量与销售量相等,已知生产该产品t万件还需投入成本(10+2t)万元(不含促销费用),产品的销售价格定为(t+$\frac{20}{t}$)万元/万件.
(Ⅰ)将该产品的利润y万元表示为促销费用x万元的函数;
(Ⅱ)促销费用投入多少万元时,厂家的利润最大.

查看答案和解析>>

同步练习册答案