精英家教网 > 高中数学 > 题目详情
已知数列{an}中,a1=2,an+1=an2+2an(n∈N+).证明数列{log2(an+1)}是等比数列,并求数列{an}的通项公式.
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列
分析:由已知得an+1+1=an2+2an+1=(an+1)2,从而log2(an+1+1)=2log2(an+1),由此能证明数列{log2(an+1)}为首项为log23,公比为2的等比数列,从而能求出an
解答: 证明:∵an+1=an2+2an
∴an+1+1=an2+2an+1=(an+1)2
∴log2(an+1+1)=2log2(an+1)=2log2(an+1),
log2(an+1+1)
log2(an+1)
=2,
又log2(a1+1)=log23,
∴数列{log2(an+1)}为首项为log23,公比为2的等比数列.
∴log2(an+1)=2n-1•log23.
∴an+1=2(log23)•2n-1
∴an=2(log23)•2n-1-1
=32n-1-1
点评:本题考查等比数列的证明,考查数列的通项公式的证明,解题时要认真审题,注意构造法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}前n项和为Sn,首项为2,且2,an,Sn成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)(理科学生做)若bn=log2an,cn=
bn
an
,求数列{cn}的前n项和Tn
(Ⅲ)(文科学生做)若bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
1
2
AB=1,M是PB的中点.
(1)证明:面PAD⊥面PCD;
(2)求AC与PB所成的角的余弦值;
(3)求二面角A-MC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+a
x
,a≠0.
(1)若a=1,用定义证明f(x)在[1,+∞)上单调递增;
(2)判断并证明f(x)在其定义域上的单调性,并求f(x)在区间[1,4]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

记f(P)为双曲线 
x2
a2
-
y2
b2
=1(a>0,b>0)上一点P到它的两条渐近线的距离之和;当P在双曲线上移动时,总有f(P)≥b.则双曲线的离心率的取值范围是(  )
A、(1,
5
4
]
B、(1,
5
3
]
C、(1,2]
D、(1,
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式ax2+3x-2>0的解集为{x|1<x<b},
(1)求实数a,b的值;
(2)解关于x的不等式
x-b
ax-c
>0(c为实常数)

查看答案和解析>>

科目:高中数学 来源: 题型:

设θ∈(
4
,π),则关于x、y的方程
x2
sinθ
-
y2
cosθ
=1所表示的曲线是(  )
A、焦点在y轴上的双曲线
B、焦点在x轴上的双曲线
C、焦点在y轴上的椭圆
D、焦点在x轴上的椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=sin(-2x+
π
4
),给出以下四个论断
①函数图象关于直线x=-
8
对称;
②函数图象一个对称中心是(
8
,0);
③函数f(x)在区间[-
π
8
8
]上是减函数;
④当且仅当kπ+
8
<x<kπ+
8
(k∈Z)时,f(x)<0.
以上四个论断正确的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin2x-2sin2x.
(1)求函数f(x)的最大值;
(2)求函数f(x)的零点的集合.

查看答案和解析>>

同步练习册答案