精英家教网 > 高中数学 > 题目详情
当x≥-3时,化简得( )
A.6
B.2
C.6或-2
D.-2x或6或2
【答案】分析:由x≥-3,知=x+3-(x-3),由此能求出其结果.
解答:解:∵x≥-3,

=x+3-(x-3)
=6.
故选A.
点评:本题考查有理数指数幂的化简求值,解题时要认真审题,注意公式=的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:阅读理解

请先阅读:
设可导函数 f(x) 满足f(-x)=-f(x)(x∈R).
在等式f(-x)=-f(x) 的两边对x求导,
得(f(-x))′=(-f(x))′,
由求导法则,得f′(-x)•(-1)=-f′(x),
化简得等式f′(-x)=f′(x).
(Ⅰ)利用上述想法(或其他方法),结合等式(1+x)n=
C
0
n
+
C
1
n
x+
C
2
n
x2+…+
C
n
n
xn
(x∈R,整数n≥2),证明:n[(1+x)n-1-1]=2
C
2
n
x+3
C
3
n
x2+4
C
4
n
x3+…+n
C
n
n
xn-1

(Ⅱ)当整数n≥3时,求
C
1
n
-2
C
2
n
+3
C
3
n
-…+(-1)n-1n
C
n
n
的值;
(Ⅲ)当整数n≥3时,证明:2
C
2
n
-3•2
C
3
n
+4•3
C
4
n
+…+(-1)n-2n(n-1)
C
n
n
=0

查看答案和解析>>

科目:高中数学 来源: 题型:

当x≥-3时,化简
(x+3)2
-
3(x-3)3
得(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

请先阅读:
设可导函数 f(x) 满足f(-x)=-f(x)(x∈R).
在等式f(-x)=-f(x) 的两边对x求导,
得(f(-x))′=(-f(x))′,
由求导法则,得f′(-x)•(-1)=-f′(x),
化简得等式f′(-x)=f′(x).
(Ⅰ)利用上述想法(或其他方法),结合等式(1+x)n=
C0n
+
C1n
x+
C2n
x2+…+
Cnn
xn
(x∈R,整数n≥2),证明:n[(1+x)n-1-1]=2
C2n
x+3
C3n
x2+4
C4n
x3+…+n
Cnn
xn-1

(Ⅱ)当整数n≥3时,求
C1n
-2
C2n
+3
C3n
-…+(-1)n-1n
Cnn
的值;
(Ⅲ)当整数n≥3时,证明:2
C2n
-3•2
C3n
+4•3
C4n
+…+(-1)n-2n(n-1)
Cnn
=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

当x≥-3时,化简
(x+3)2
-
3(x-3)3
得(  )
A.6B.2xC.6或-2xD.-2x或6或2x

查看答案和解析>>

同步练习册答案