精英家教网 > 高中数学 > 题目详情
过双曲线左焦点的直线与以右焦点为圆心、为半径的圆相切于A点,且,则双曲线的离心率为
A.B.C.D.
B

试题分析:因为,过双曲线左焦点的直线与以右焦点为圆心、为半径的圆相切于A点,且,所以,,在直角三角形中,
由勾股定理得,
所以,,故选B。
点评:典型题,本题综合性较强,利用数形结合思想,分析图形特征,得到a,b的关系,进一步确定离心率。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知椭圆的焦点为P是椭圆上一动点,如果延长F1PQ,使,那么动点Q的轨迹是(      )
A.椭圆B.双曲线C.抛物线D.圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知分别为椭圆的上、下焦点,其中也是抛物线的焦点,点在第二象限的交点,且

(Ⅰ)求椭圆的方程;
(Ⅱ)已知点(1,3)和圆,过点的动直线与圆相交于不同的两点,在线段取一点,满足:)。
求证:点总在某定直线上。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知拋物线x2=4py(p>0)与双曲线有相同的焦点F,点A 是两曲线的一个交点,且AF丄y轴,则双曲线的离心率为
A,    B.    C.    D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的渐近线方程为,左焦点为F,过的直线为,原点到直线的距离是
(1)求双曲线的方程;
(2)已知直线交双曲线于不同的两点CD,问是否存在实数,使得以CD为直径的圆经过双曲线的左焦点F。若存在,求出m的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的短轴长等于焦距,椭圆C上的点到右焦点的最短距离为.
(1)求椭圆C的方程;
(2)过点且斜率为(>0)的直线C交于两点,是点关于轴的对称点,证明:三点共线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆(a>b>0)的离心率为,以原点为圆心,椭圆短半轴长半径的圆与直线y=x+ 相切.
(1)求椭圆的方程;
(2)设直线与椭圆在轴上方的一个交点为是椭圆的右焦点,试探究以
直径的圆与以椭圆长轴为直径的圆的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线和椭圆有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

动圆过定点,且与直线相切,其中.设圆心的轨迹的程为
(1)求
(2)曲线上的一定点(0) ,方向向量的直线(不过P点)与曲线交与A、B两点,设直线PA、PB斜率分别为,计算
(3)曲线上的两个定点,分别过点作倾斜角互补的两条直线分别与曲线交于两点,求证直线的斜率为定值;

查看答案和解析>>

同步练习册答案