精英家教网 > 高中数学 > 题目详情

【题目】某贫困村共有农户100户,均从事水果种植,平均每户年收入为1.8万元,在当地政府大力扶持和引导下,村委会决定2020年初抽出户()从事水果销售工作,经测算,剩下从事水果种植的农户平均每户年收入比上一年提高了,而从事水果销售的农户平均每户年收入为万元.

1)为了使从事水果种植的农户三年后平均每户年收入不低于2.4万元,那么2020年初至少应抽出多少农户从事水果销售工作?

2)若一年后,该村平均每户的年收入为(万元),问的最大值是否可以达到2.1万元?

【答案】(1)至少抽出户贫困农户从事水果销售工作(2)可以达到万元,详见解析

【解析】

1)首先得出种植户的平均收入,得不等式,解不等式即可得出答案;

2)得出该村平均每户的年收入为,利用二次函数的性质求出最大值.

1)经过三年,种植户的平均收入为

因而由题意,得

,即至少抽出户贫困农户从事水果销售工作.

2

对称轴

因而当时,可以达到万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,函数

(1)讨论函数的单调性;

(2)若的极值点,且曲线在两点 处的切线互相平行,这两条切线在y轴上的截距分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足,且当时,成立,若,则abc的大小关系是()

A. aB. C. D. c

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若不等式的解集为,求a的值;

(2)在(1)的条件下,若存在,使,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面四边形ABCD中, .

(1),求的大小;

(2)设△BCD的面积为S,求S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年某市政府出台了“2020年创建全国文明城市(简称创文)”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:①调查对象为本市市民,被调查者各自独立评分;②采用百分制评分, 内认定为满意,80分及以上认定为非常满意;③市民对公交站点布局的满意率不低于60%即可进行验收;④用样本的频率代替概率.

(1)求被调查者满意或非常满意该项目的频率;

(2)若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率;

(3)已知在评分低于60分的被调查者中,老年人占,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记为群众督查员中老年人的人数,求随机变量的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若曲线在点处的切线方程为,求的值;

2)当时,求证:

3)设函数,其中为实常数,试讨论函数的零点个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当aR时,讨论函数fx)的单调性;

2)对任意的x∈(1+∞)均有fx)<ax,若aZ,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左,右焦点分别为,点在椭圆.

1)求椭圆的标准方程;

2)是否存在斜率为的直线与椭圆相交于,两点,使得?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案