分析 (1)根据条件f(-1)=1,即可求a的值;
(2)根据对数函数的性质即可求函数f(x)的定义域;
(3)根据函数奇偶性的定义即可判断函数f(x)的奇偶性.
解答 解:(1)由f(-1)=loga3=1,得a=3;…(4分).
(2)由$f(x)={log_3}\frac{2-x}{2+x}$有$\frac{2-x}{2+x}>0$,解得-2<x<2,
则函数f(x)的定义域为(-2,2)…(4分).;
(3)函数f(x)的定义域为(-2,2)且$f(-x)={log_3}\frac{2+x}{2-x}={log_3}{({\frac{2-x}{2+x}})^{-1}}=-{log_3}\frac{2-x}{2+x}=-f(x)$
则函数f(x)为(-2,2)上的奇函数.…(4分)
点评 本题主要考查函数定义域的求解,函数奇偶性的判断,根据对数函数的性质结合函数奇偶性的定义是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\{y|0<y<\frac{1}{2}\}$ | B. | {y|0<y<1} | C. | $\{y|\frac{1}{2}<y<1\}$ | D. | $\{y|0≤y<\frac{1}{2}\}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com