精英家教网 > 高中数学 > 题目详情
10.已知圆D的半径为1,圆C的方程是(x-2)2+(y+1)2=4,若圆D与圆C相切于点(4,-1),则圆D的标准方程是(x-5)2+(y+1)2=1 或(x-3)2+(y+1)2=1.

分析 分两圆外切、内切两种情况,分别求得圆心的坐标,可得要求的圆的方程.

解答 解:圆(x-2)2+(y+1)2=4的圆心为C(2,-1),半径为2,
设所求的圆心坐标为(a,b),
切点为A(4,-1)且半径为1的圆满足$\sqrt{(a-4)^{2}+(b+1)^{2}}=1$,①
(1)若两圆外切,则$\sqrt{(a-2)^{2}+(b+1)^{2}}=1+2=3$,②
由①②得a=5,b=-1,即此时圆心为为M(5,-1),
(2)若两圆内切,则$\sqrt{(a-2)^{2}+(b+1)^{2}}$=2-1=1,③
由①③得a=3,b=-1,即此时圆心为为N(3,-1),
故要求的圆的方程为(x-5)2+(y+1)2=1 或(x-3)2+(y+1)2=1.

点评 本题主要两圆相切的性质,求圆的标准方程,求出圆心的坐标,是解题的关键,注意要分内切和外切两种情况.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.曲线y=sinx与直线y=$\frac{2}{π}$x所围成的平面图形的面积是2-$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某人要作一个三角形,要求它的三条高的长度分别是$\frac{1}{13}$,$\frac{1}{11}$,$\frac{1}{5}$,则此人将(  )
A.不能作出满足要求的三角形B.作出一个钝角三角形
C.作出一个直角三角形D.作出一个锐角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$=($\sqrt{2}sin$($\frac{π}{4}+mx$),-$\sqrt{3}$),$\overrightarrow{b}$=($\sqrt{2}$sin($\frac{π}{4}$+mx),cos2mx)x∈R,m∈R,函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$.
(Ⅰ)当m=1时,x$∈[\frac{π}{4},\frac{π}{2}]$时,求f(x)的最大值和最小值;
(Ⅱ)当m=$\frac{nπ}{2}$时,若f(x)在区间[0,2015]恰有2015个零点,求整数n的所有取值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.用0,1,2,3,4,5这六个数字组成没有重复数字的四位数,这样的四位数中,偶数的个数有156个(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在一次某班42名学生参加课外篮球、排球兴趣小组(每人参加且只参加一个兴趣小组)的情况调查中,经统计得到如下2×2列联表:(单位:人)
  篮球 排球 总计
 男同学 16  22 
 女同学 8 12 20
 总计 24 18 42
通过计算得x2=4.852,则参加“篮球小组”与性别间有关系的可能性为(  )
(下面临界值表供参考
 P(x2≥k) 0.05 0.01
 k 3.841 6.635
A.99%B.95%C.90%D.无关系

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\frac{1}{2}$tan2x是(  )
A.周期为π的偶函数B.周期为$\frac{π}{2}$的奇函数
C.周期为$\frac{π}{2}$的偶函数D.周期为π的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某生态农庄池塘的平面图为矩形ABCD,已知AB=4,BC=10,E为AD上一点,且AE=2,P为池塘内一临时停靠点,且P到AB,BC的距离均为3,EC,EB为池塘上浮桥,为了固定浮桥,现准备进过临时停靠点P再架设一座浮桥MN,其中M,N分别是浮桥EC,EB上点.(浮桥宽度、池塘岸边宽度不计),设EM=d,
(1)当d为何值时,P为浮桥MN的中点?
(2)怎样架设浮桥MN才能使得△EMN面积最小,求出面积最小时d的值?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ln(x+1),g(x)=$\frac{1}{x}$.
(Ⅰ)设F(x)=f(x)-g(x),试判断函数F(x)在区间(0,+∞)上是增函数还是减函数?并证明你的结论;
(Ⅱ)若方程f(x)=$\frac{m}{x+1}$在区间[-1+$\frac{1}{{e}^{2}}$,1+$\frac{1}{{e}^{2}}$)上有两不相等的实数根,求m的取值范围;
(Ⅲ)当x>0时,若$\frac{f(x)}{x}$+g(x)>$\frac{k}{x+1}$恒成立,求整数k的最大值.

查看答案和解析>>

同步练习册答案