【题目】椭圆 + =1的左焦点为F,直线x=a与椭圆相交于点M、N,当△FMN的周长最大时,△FMN的面积是( )
A.
B.
C.
D.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex(x﹣b)(b∈R).若存在x∈[ ,2],使得f(x)+xf′(x)>0,则实数b的取值范围是( )
A.(﹣∞, )
B.(﹣∞, )
C.(﹣ , )
D.( ,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C: 过点P( ,1)且离心率为 ,F为椭圆的右焦点,过F的直线交椭圆C于M,N两点,定点A(﹣4,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若△AMN面积为3 ,求直线MN的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A、B、C所对的边分别是a、b、c,已知sinB+sinC=msinA(m∈R),且a2﹣4bc=0.
(1)当a=2, 时,求b、c的值;
(2)若角A为锐角,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,BC=2AB=4,∠ABC=60°,PA⊥AD,E,F分别为BC,PE的中点,AF⊥平面PED.
(1)求证:PA⊥平面ABCD
(2)求直线BF与平面AFD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:参数方程与极坐标系]
以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为 ,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2θ﹣2cosθ=0.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com