精英家教网 > 高中数学 > 题目详情
9.若定义在R上的偶函数y=f(x)是[0,+∞)上的递增函数,则不等式f(log2x)<f(-1)的解集($\frac{1}{2}$,2).

分析 根据函数奇偶性和单调性的关系将不等式进行转化即可.

解答 解:∵定义在R上的偶函数y=f(x)是[0,+∞)上的递增函数,
∴不等式f(log2x)<f(-1)等价为f(|log2x|)<f(1),
即|log2x|<1,
则-1<log2x<1,
则$\frac{1}{2}$<x<2,
即不等式的解集为($\frac{1}{2}$,2),
故答案为:($\frac{1}{2}$,2)

点评 本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系将不等式进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列说法中正确的是(  )
A.命题“?x∈R,x2-x≤0”的否定是“?x∈R,x2-x≥0”
B.命题“p∧q为真”是命题“p∨q为真”的必要不充分条件
C.设x,y∈R,“若x+y≠4,则x≠1或y≠3”是假命题
D.设a,b,m∈R,“若am2≤bm2,则a≤b”的否命题为真

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A(1,$\frac{3}{2}$)且离心率e=$\frac{1}{2}$
(1)求椭圆E的方程
(2)若直线l:y=x+m与椭圆E交于相异的两点P和Q,求实数m取值范围.
(3)在(2)的情况下,求△OPQ的面积取得最大时直线l的方程(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,则$\overrightarrow{a}$•$\overrightarrow{b}$=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出下列说法:
①函数$y=2tan({2x+\frac{π}{3}})$的对称中心是$({\frac{kπ}{2}-\frac{π}{6}\;,\;\;0})$;
②函数$f(x)=2tan({-2x+\frac{π}{4}})$单调递增区间是$({\frac{kπ}{2}-\frac{π}{8}\;,\;\;\frac{kπ}{2}+\frac{3π}{8}})({k∈Z})$;
③函数$y=2tan({2x+\frac{π}{3}})$的定义域是$\left\{{x|x≠kπ+\frac{π}{12}({k∈Z})}\right\}$;
④函数y=tanx+1在$[{-\frac{π}{4}\;,\;\;\frac{π}{3}}]$上的最大值为$\sqrt{3}+1$,最小值为0.
其中正确说法有几个(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,点(2,1)在椭圆C上.
(1)求椭圆C的方程;
(2)设直线l与圆O:x2+y2=2相切,与椭圆C相交于P,Q两点.
①若直线l过椭圆C的右焦点F,求△OPQ的面积;
②求证:OP⊥OQ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}、{bn}满足a1=b1=1,an+1=an+2bn,bn+1=an+bn,则下列结论正确的是(  )
A.只有有限个正整数n使得an<$\sqrt{2}$bnB.只有有限个正整数n使得an>$\sqrt{2}$bn
C.数列{|an-$\sqrt{2}$bn|}是递增数列D.数列{|$\frac{{a}_{n}}{{b}_{n}}$-$\sqrt{2}$|}是递减数列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知△ABC的三个顶点坐标分别为A(-1,1),B(7,-1),C(-2,5),AB边上的中线所在直线为l.
(1)求直线l的方程;
(2)若点A关于直线l的对称点为D,求△BCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=ln(2x+3)+x2
(Ⅰ)讨论f(x)的单调性;          
(Ⅱ)求f(x)在区间[0,1]的最大值和最小值.

查看答案和解析>>

同步练习册答案