在2000年至2003年期间,甲每年6月1日都到银行存入元的一年定期储蓄,若年利率为保持不变,且每年到期的存款本息自动转为新的一年定期,到2004年6月1日甲去银行不再存款,而是将所有存款的本息全部取回,则取回的金额是( )
A.元 | B.元 |
C.元 | D.元 |
科目:高中数学 来源: 题型:单选题
在数列中,如果存在常数,使得对于任意正整数均成立,那么就称数列为周期数列,其中叫做数列的周期. 已知数列满足,若,当数列的周期为时,则数列的前2012项的和为( )
A.1339+a | B.1340+a | C.1341+a | D.1342+a |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数: 1,1,2,3,5,8,13,其中从第三个数起,每一个数都等于他前而两个数的和.该数列是一个非常美丽、和谐的数列,有很多奇妙的属性.比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887 .人们称该数列{an}为“斐波那契数列”.若把该数列{an}的每一项除以4所得的余数按相对应的顺序组成新数列{bn},在数列{bn}中第2014项的值是_______]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com