½â´ð£º½â£º£¨1£©ÉèF
2£¬MµÄ×ø±ê·Ö±ðΪ
(£¬0)£¬(£¬y0)-------------------£¨1·Ö£©
ÒòΪµãMÔÚË«ÇúÏßCÉÏ£¬ËùÒÔ
1+b2-=1£¬¼´
y0=¡Àb2£¬ËùÒÔ
|MF2|=b2------------£¨2·Ö£©
ÔÚRt¡÷MF
2F
1ÖУ¬¡ÏMF
1F
2=30¡ã£¬
|MF2|=b2£¬ËùÒÔ
|MF1|=2b2------------£¨3·Ö£©
ÓÉË«ÇúÏߵĶ¨Òå¿ÉÖª£º
|MF1|-|MF2|=b2=2¹ÊË«ÇúÏßCµÄ·½³ÌΪ£º
x2-=1-------------------£¨4·Ö£©
£¨2£©ÓÉÌõ¼þ¿ÉÖª£ºÁ½Ìõ½¥½üÏß·Ö±ðΪ
l1£ºx-y=0£»l2£ºx+y=0-------------------£¨5·Ö£©
ÉèË«ÇúÏßCÉϵĵãQ£¨x
0£¬y
0£©£¬
ÔòµãQµ½Á½Ìõ½¥½üÏߵľàÀë·Ö±ðΪ
d1=£¬d2=-------------------£¨7·Ö£©
ËùÒÔ
d1•d2=•=-------------------£¨8·Ö£©
ÒòΪQ£¨x
0£¬y
0£©ÔÚË«ÇúÏßC£º
x2-=1ÉÏ£¬ËùÒÔ
2x02-y02=2-------------------£¨9·Ö£©
¹Ê
d1•d2==-------------------£¨10·Ö£©
£¨3£©½âÒ»£ºÒòΪP£¨x
0£¬y
0£©ÎªÔ²O£ºx
2+y
2=2ÉÏÈÎÒâÒ»µã£¬Éè
x0=cos¦Á£¬y0=sin¦ÁËùÒÔÇÐÏßlµÄ·½³ÌΪ£º
xcos¦Á+ysin¦Á=-------------------£¨12·Ö£©
´úÈëË«ÇúÏßC£º2x
2-y
2=2=£¨xcos¦Á+ysin¦Á£©
2Á½±ß³ýÒÔx
2£¬µÃ
(1+sin2¦Á)()2+2sin¦Ácos¦Á()+cos2¦Á-2=0-------------------£¨13·Ö£©
ÉèA£¨x
1£¬y
1£©£¬B£¨x
2£¬y
2£©£¬Ôò
£¬ÊÇÉÏÊö·½³ÌµÄÁ½¸ö¸ù
ÓÉΤ´ï¶¨ÀíÖª£º
==-1£¬¼´x
1x
2+y
1y
2=0-------------------£¨15·Ö£©
ËùÒÔ
•=x1x2+y1y2=0-------------------£¨16·Ö£©
½â¶þ£ºÉèA£¨x
1£¬y
1£©£¬B£¨x
2£¬y
2£©£¬ÇÐÏßlµÄ·½³ÌΪ£ºx
0x+y
0y=2-------------------£¨12·Ö£©
¢Ùµ±y
0¡Ù0ʱ£¬ÇÐÏßlµÄ·½³Ì´úÈëË«ÇúÏßCÖУ¬»¯¼òµÃ£º
(2y02-x02)x2+4x0x-(2y02+4)=0ËùÒÔ£º
x1+x2=-£¬x1x2=--------------------£¨13·Ö£©
ÓÖ
y1y2=•=[4-2x0(x1+x2)+x02x1x2]=ËùÒÔ
•=x1x2+y1y2=-+==0-----------£¨15·Ö£©
¢Úµ±y
0=0ʱ£¬Ò×ÖªÉÏÊö½áÂÛÒ²³ÉÁ¢£®
ËùÒÔ
•=x1x2+y1y2=0-------------------£¨16·Ö£©