ÒÑÖªµãF1£¬F2Ϊ˫ÇúÏßC£ºx2-
y2
b2
=1(b£¾0)
µÄ×ó¡¢ÓÒ½¹µã£¬¹ýF2×÷´¹Ö±ÓÚxÖáµÄÖ±Ïߣ¬ÔÚxÖáÉÏ·½½»Ë«ÇúÏßÓÚµãM£¬ÇÒ¡ÏMF1F2=300£¬Ô²OµÄ·½³ÌΪx2+y2=b2£®
£¨1£©ÇóË«ÇúÏßCµÄ·½³Ì£»
£¨2£©ÈôË«ÇúÏßCÉϵĵ㵽Á½Ìõ½¥½üÏߵľàÀë·Ö±ðΪd1£¬d2£¬Çód1•d2µÄÖµ£»
£¨3£©¹ýÔ²OÉÏÈÎÒâÒ»µãP£¨x0£¬y0£©×÷ÇÐÏßl½»Ë«ÇúÏßCÓÚA£¬BÁ½¸ö²»Í¬µã£¬Çó
OA
OB
µÄÖµ£®
·ÖÎö£º£¨1£©ÉèF2£¬MµÄ×ø±ê£¬ÀûÓõãMÔÚË«ÇúÏßCÉÏ£¬¡ÏMF1F2=30¡ã£¬¿ÉµÃ|MF1|-|MF2|=b2=2£¬ÀûÓÃË«ÇúÏߵĶ¨Ò壬¿ÉµÃË«ÇúÏßCµÄ·½³Ì£»
£¨2£©ÏÈÈ·¶¨Á½Ìõ½¥½üÏß·½³Ì£¬ÉèË«ÇúÏßCÉϵĵãQ£¨x0£¬y0£©£¬Çó³öµãQµ½Á½Ìõ½¥½üÏߵľàÀ룬½áºÏQ£¨x0£¬y0£©ÔÚË«ÇúÏßCÉÏ£¬¼´¿ÉÇód1•d2µÄÖµ£»
£¨3£©½âÒ»£ºÀûÓÃÔ²µÄ²ÎÊý·½³ÌÉèPµÄ×ø±ê£¬Çó³öÇÐÏßlµÄ·½³Ì´úÈëË«ÇúÏߣ¬Á½±ß³ýÒÔx2£¬ÔÙÀûÓÃΤ´ï¶¨Àí£¬¼´¿ÉµÃµ½½áÂÛ£»
½â¶þ£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÇÐÏßlµÄ·½³ÌΪ£ºx0x+y0y=2´úÈëË«ÇúÏßCÖУ¬ÀûÓÃΤ´ï¶¨Àí£¬½áºÏÏòÁ¿µÄÊýÁ¿»ý£¬¿ÉµÃ½áÂÛ£®
½â´ð£º½â£º£¨1£©ÉèF2£¬MµÄ×ø±ê·Ö±ðΪ(
1+b2
£¬0)£¬(
1+b2
£¬y0)
-------------------£¨1·Ö£©
ÒòΪµãMÔÚË«ÇúÏßCÉÏ£¬ËùÒÔ1+b2-
y02
b2
=1
£¬¼´y0=¡Àb2£¬ËùÒÔ|MF2|=b2------------£¨2·Ö£©
ÔÚRt¡÷MF2F1ÖУ¬¡ÏMF1F2=30¡ã£¬|MF2|=b2£¬ËùÒÔ|MF1|=2b2------------£¨3·Ö£©
ÓÉË«ÇúÏߵĶ¨Òå¿ÉÖª£º|MF1|-|MF2|=b2=2
¹ÊË«ÇúÏßCµÄ·½³ÌΪ£ºx2-
y2
2
=1
-------------------£¨4·Ö£©
£¨2£©ÓÉÌõ¼þ¿ÉÖª£ºÁ½Ìõ½¥½üÏß·Ö±ðΪl1£º
2
x-y=0£»l2£º
2
x+y=0
-------------------£¨5·Ö£©
ÉèË«ÇúÏßCÉϵĵãQ£¨x0£¬y0£©£¬
ÔòµãQµ½Á½Ìõ½¥½üÏߵľàÀë·Ö±ðΪd1=
|
2
x0-y0|
3
£¬d2=
|
2
x0+y0|
3
-------------------£¨7·Ö£©
ËùÒÔd1d2=
|
2
x0-y0|
3
|
2
x0+y0|
3
=
|2x02-y02|
3
-------------------£¨8·Ö£©
ÒòΪQ£¨x0£¬y0£©ÔÚË«ÇúÏßC£ºx2-
y2
2
=1
ÉÏ£¬ËùÒÔ2x02-y02=2-------------------£¨9·Ö£©
¹Êd1d2=
|2x02-y02|
3
=
2
3
-------------------£¨10·Ö£©
£¨3£©½âÒ»£ºÒòΪP£¨x0£¬y0£©ÎªÔ²O£ºx2+y2=2ÉÏÈÎÒâÒ»µã£¬Éèx0=
2
cos¦Á£¬y0=
2
sin¦Á

ËùÒÔÇÐÏßlµÄ·½³ÌΪ£ºxcos¦Á+ysin¦Á=
2
-------------------£¨12·Ö£©
´úÈëË«ÇúÏßC£º2x2-y2=2=£¨xcos¦Á+ysin¦Á£©2
Á½±ß³ýÒÔx2£¬µÃ(1+sin2¦Á)(
y
x
)2+2sin¦Ácos¦Á(
y
x
)+cos2¦Á-2=0
-------------------£¨13·Ö£©
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôò
y1
x1
£¬
y2
x2
ÊÇÉÏÊö·½³ÌµÄÁ½¸ö¸ù
ÓÉΤ´ï¶¨ÀíÖª£º
y1y2
x1x2
=
cos2¦Á-2
sin2¦Á+1
=-1
£¬¼´x1x2+y1y2=0-------------------£¨15·Ö£©
ËùÒÔ
OA
OB
=x1x2+y1y2=0
-------------------£¨16·Ö£©
½â¶þ£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÇÐÏßlµÄ·½³ÌΪ£ºx0x+y0y=2-------------------£¨12·Ö£©
¢Ùµ±y0¡Ù0ʱ£¬ÇÐÏßlµÄ·½³Ì´úÈëË«ÇúÏßCÖУ¬»¯¼òµÃ£º(2y02-x02)x2+4x0x-(2y02+4)=0
ËùÒÔ£ºx1+x2=-
4x0
(2y02-x02)
£¬x1x2=-
(2y02+4)
(2y02-x02)
-------------------£¨13·Ö£©
ÓÖy1y2=
(2-x0x1)
y0
(2-x0x2)
y0
=
1
y02
[4-2x0(x1+x2)+x02x1x2]=
8-2x02
2y02-x02

ËùÒÔ
OA
OB
=x1x2+y1y2=-
(2y02+4)
(2y02-x02)
+
8-2x02
2y02-x02
=
4-2(x02+y02)
2y02-x02
=0
-----------£¨15·Ö£©
¢Úµ±y0=0ʱ£¬Ò×ÖªÉÏÊö½áÂÛÒ²³ÉÁ¢£®
ËùÒÔ
OA
OB
=x1x2+y1y2=0
-------------------£¨16·Ö£©
µãÆÀ£º±¾Ì⿼²éË«ÇúÏߵıê×¼·½³Ì£¬¿¼²éË«ÇúÏߵļ¸ºÎÐÔÖÊ£¬¿¼²éÔ²µÄÇÐÏß·½³Ì£¬¿¼²éΤ´ï¶¨ÀíµÄÔËÓ㬿¼²éÏòÁ¿ÖªÊ¶£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª½¹µãÔÚxÖáÉϵÄË«ÇúÏßCµÄÁ½Ìõ½¥½üÏß¹ý×ø±êÔ­µã£¬ÇÒÁ½Ìõ½¥½üÏßÓëÒÔµãA (0£¬)ΪԲÐÄ£¬1Ϊ°ë¾¶µÄÔ²ÏàÇУ¬ÓÖÖªCµÄÒ»¸ö½¹µãÓëA¹ØÓÚy = x¶Ô³Æ£®

    £¨1£©ÇóË«ÇúÏßCµÄ·½³Ì£»

    £¨2£©ÈôQÊÇË«ÇúÏßÏßCÉϵÄÈÎÒ»µã£¬F1£¬F2Ϊ˫ÇúÏßCµÄ×ó¡¢ÓÒÁ½¸ö½¹µã£¬´ÓF1Òý¡ÏF1QF2µÄƽ·ÖÏߵĴ¹Ïߣ¬´¹×ãΪN£¬ÊÔÇóµãNµÄ¹ì¼£·½³Ì£»

    £¨3£©ÉèÖ±Ïßy = mx + 1ÓëË«ÇúÏßCµÄ×óÖ§½»ÓÚA¡¢BÁ½µã£¬ÁíÒ»Ö±Ïßl¾­¹ýM (¨C2£¬0)¼°ABµÄÖе㣬ÇóÖ±ÏßlÔÚyÖáÉϵĽؾàbµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑ֪˫ÇúÏßµÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬ÆäÒ»Ìõ½¥½ü·½³ÌΪy=x£¬µã ÔÚ¸ÃË«ÉÏ£¬Ôò

£¨A£©-12          £¨B£©-2          £¨C£©0           £¨D£©4

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸