精英家教网 > 高中数学 > 题目详情

【题目】已知直线及点.

1)证明直线过某定点,并求该定点的坐标;

(2)当点到直线的距离最大时,求直线的方程.

【答案】(1)证明见解析,定点坐标为(2)15x24y20.

【解析】试题分析:1直线l的方程可化为 a(2xy1)b(xy1)0,即可解得定点;

(2)由1知直线l恒过定点A当直线l垂直于直线PA时,点P到直线l的距离最大,利用点斜式求直线方程即可.

试题解析:

1证明:直线l的方程可化为 a(2xy1)b(xy1)0

,所以直线l恒过定点

21知直线l恒过定点A

当直线l垂直于直线PA时,点P到直线l的距离最大.

又直线PA的斜率,所以直线l的斜率kl=-

故直线l的方程为

15x24y20

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2 ,BC=4 ,PA=2,点M在线段PD上.

(1)求证:AB⊥PC.
(2)若二面角M﹣AC﹣D的大小为45°,求BM与平面PAC所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面

(1)求三棱锥的体积;

(2)在平面内经过点,画一条直线,使,请写出作法,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程.

(Ⅰ)若此方程表示圆,求的取值范围;

(Ⅱ)若(Ⅰ)中的圆与直线相交于 两点,且为坐标原点),求

(Ⅲ)在(Ⅱ)的条件下,求以为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,圆,点,点是圆上的动点,线段的垂直平分线交线段于点,设分别为点的横坐标,定义函数,给出下列结论:

;②是偶函数;③在定义域上是增函数;

图象的两个端点关于圆心对称;

⑤动点到两定点的距离和是定值.

其中正确的是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求函数的值域;

(2)如果对任意的不等式恒成立,求实数的取值范围;

(3)是否存在实数使得函数的最大值为0,若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称函数的一个上界.已知函数 .

(1)若函数为奇函数,求实数的值;

(2)在第(1)的条件下,求函数在区间上的所有上界构成的集合;

(3)若函数上是以3为上界的有界函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱 中, 分别是 的中点,
(Ⅰ)证明: ∥平面
(Ⅱ)求锐二面角 的余弦值.

查看答案和解析>>

同步练习册答案