精英家教网 > 高中数学 > 题目详情
设椭圆的一个焦点为(
3
,0)
,且a=2b,则椭圆的标准方程为(  )
A、
x2
4
+y2
=1
B、
x2
2
+y2
=1
C、
y2
4
+x2
=1
D、
y2
2
+x2
=1
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:由已知可设椭圆的标准方程为
x2
4b2
+
y2
b2
=1
,根据a,b,c之间的关系,可得椭圆的标准方程.
解答: 解:∵a=2b,椭圆的一个焦点为(
3
,0)

∴设椭圆的标准方程为
x2
4b2
+
y2
b2
=1

∴a2-b2=3b2=3,
故椭圆的标准方程为
x2
4
+y2=1

故选:A
点评:本题考查的知识点是椭圆的标准方程,椭圆的简单性质,难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若A为抛物线y=
1
4
x2
的顶点,过抛物线焦点的直线交抛物线于B、C两点,则
AB
AC
等于(  )
A、-3B、3C、5D、-5

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈[-2,1],x2-a≤0”为真命题的一个必要不充分条件是(  )
A、a≥4B、a≥1
C、a≤4D、a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四棱锥S-ABCD中,SA=2
3
,那么当该棱锥的体积最大时,它的底面积为(  )
A、4B、8C、16D、32

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sin(2x+
π
3
)
,则下列结论正确的是(  )
A、把f(x)的图象向左平移
π
12
个单位,得到一个偶函数的图象
B、f(x)的图象关于点(
π
4
,0)
对称
C、f(x)的最小正周期为π,且在[0,
π
6
]
上为增函数
D、f(x)的图象关于直线x=-
π
3
对称

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={0,1,2},集合B={0,2,4},则A∪B=(  )
A、{0}
B、{2}
C、{0,2,4}
D、{0,1,2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}各项为正,Sn为其前n项和,满足2Sn=3an-3,数列{bn}为等差数列,且b2=2,b10=10,求数列{an+bn}的前n项和Tn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,抛物线C:y2=2px(p>0)的焦点F(1,0),过点F任作两条弦AC,BD,且
AC
BD
=0,E,G分别为AC、BD的中点
(1)写出抛物线C的方程;
(2)设过点(3,0)的直线EG交抛物线C于M、N两点,试求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,边长为2的正方形ACDE所在平面与平面ABC垂直,AD与CE的交点为M,AC⊥BC,且AC=BC,
(1)求证:AM⊥平面EBC;
(2)求直线EC与平面ABE所成线面角的正切值.

查看答案和解析>>

同步练习册答案