精英家教网 > 高中数学 > 题目详情

【题目】已知平面上一动点P到定点C10)的距离与它到直线的距离之比为.

1)求点P的轨迹方程;

2)点O是坐标原点,AB两点在点P的轨迹上,F是点C关于原点的对称点,若,求的取值范围.

【答案】12

【解析】

1)设,由动点P到定点C10)的距离与它到直线的距离之比为,列出方程,即可求解;

2)由,得,代入椭圆的方程得,又由,得,两式相减,求得,根据的范围,即可求解的取值范围.

1)设是所求轨迹上的任意一点,

由动点P到定点C10)的距离与它到直线的距离之比为

,化简得,即点P的轨迹方程为.

2)由F是点C关于原点的对称点,所以点F的坐标为(-10),

,因为

,可得

,即

又由,则

②得:,化简得

,∴,解得

所以λ的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱锥P-ABC中,顶点P在底面ABC的投影GABC的外心,PB=BC2,则面PBC与底面ABC所成的二面角的大小为60,则三棱锥PABC的外接球的表面积为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区某农产品近几年的产量统计如下表:

(1)根据表中数据,建立关于的线性回归方程

(2)若近几年该农产品每千克的价格 (单位:元)与年产量满足的函数关系式为,且每年该农产品都能售完.

①根据(1)中所建立的回归方程预测该地区年该农产品的产量;

②当为何值时,销售额最大?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在底面为梯形的四棱锥S﹣ABCD中,已知AD∥BC,∠ASC=60°,,SA=SC=SD=2.

(1)求证:AC⊥SD;

(2)求三棱锥B﹣SAD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得分,回答不正确得分,第三个问题回答正确得分,回答不正确得分.如果一个挑战者回答前两个问题正确的概率都是,回答第三个问题正确的概率为,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题总分不低于分就算闯关成功.

(Ⅰ)求至少回答对一个问题的概率;

(Ⅱ)求这位挑战者回答这三个问题的总得分X的分布列;

(Ⅲ)求这位挑战者闯关成功的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为调查高三年级学生的身高情况,按随机抽样的方法抽取100名学生,得到男生身高情况的频率分布直方图(图(1))和女生身高情况的频率分布直方图(图(2)).已知图(1)中身高在的男生人数有16人.

(1)试问在抽取的学生中,男,女生各有多少人?

(2)根据频率分布直方图,完成下列的列联表,并判断能有多大(百分之几)的把握认为“身高与性别有关”?

总计

男生身高

女生身高

总计

(3)在上述100名学生中,从身高在之间的男生和身高在之间的女生中间按男、女性别分层抽样的方法,抽出6人,从这6人中选派2人当旗手,求2人中恰好有一名女生的概率.

参考公式:

参考数据:

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆经过点,且点为其一个焦点.

(1)求椭圆的方程;

(2)设椭圆轴的两个交点为,不在轴上的动点在直线上运动,直线分别与椭圆交于点,证明:直线通过一个定点,且的周长为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】长方形中,中点(图1.沿折起,使得(图2)在图2:

1)求证:平面平面

2)在线段上是否存点,使得二面角的余弦值为,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了解数学题获取软件激活码的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22依此类推.求满足如下条件的最小整数NN>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是

A. 440B. 330

C. 220D. 110

查看答案和解析>>

同步练习册答案