精英家教网 > 高中数学 > 题目详情
13.已知△ABC的三内角A,B,C,所对三边分别为a,b,c,sin(A-$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$,若△ABC的面积S=24,b=10,则a的值是(  )
A.5B.6C.7D.8

分析 利用差角的正弦公式,即可求sinA,cosA的值,利用三角形面积公式可求c,利用余弦定理求a的值.

解答 解:∵sin(A-$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$,
∴$\frac{\sqrt{2}}{2}$(sinA-cosA)=$\frac{\sqrt{2}}{10}$,
∴sinA-cosA=$\frac{1}{5}$,
∴sinAcosA=$\frac{12}{25}$,
∴sinA=$\frac{4}{5}$,cosA=$\frac{3}{5}$,
∵△ABC的面积S=24,b=10,
∴24=$\frac{1}{2}$bcsinA=$\frac{1}{2}×10×c×\frac{4}{5}$,
∴c=6,
∴a=$\sqrt{{b}^{2}+{c}^{2}-2bccosA}$=8.
故选:D.

点评 本题考查差角的正弦公式、三角形的面积公式,考查余弦定理的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.作图并求值域,单调区间:y=|x-2|-|x+2|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在三棱柱ABC-A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AAl,A1B1上,且AE=$\frac{1}{2}$,A1F=$\frac{3}{4}$,CE⊥EF,M为AB中点
( I)证明:EF⊥平面CME;
(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设向量$\overrightarrow a=(1,\sqrt{3}),\overrightarrow b=(m,\sqrt{3})$,且$\overrightarrow a,\overrightarrow b$的夹角为$\frac{π}{3}$,则m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x-a|+|2x-1|.
(Ⅰ)当a=1时,解不等式f(x)≥2;
(Ⅱ)求证:$f(x)≥|a-\frac{1}{2}|$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知抛物线y2=2px (p>0)上的一点M到定点A($\frac{7}{2}$,4)和焦点F的距离之和的最小值等于5,则P=3或1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.方程xy(x+y)=1所表示的曲线(  )
A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知{an}是正项等差数列,数列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}的前n项和Sn=$\frac{n}{2n+4}$,若bn=(-1)n•an2,则数列{bn}的前n项和T2n=2n2+3n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数$f(x)=\left\{\begin{array}{l}{log_2}(-x),x<0\\{2^x},x≥0\end{array}\right.$,若关于x的方程f2(x)-af(x)=0恰有三个不同的实数根,则实数a的取值范围是(  )
A.[0,+∞)B.(0,+∞)C.(1,+∞)D.[1,+∞)

查看答案和解析>>

同步练习册答案