精英家教网 > 高中数学 > 题目详情
10.复数$\frac{1-3i}{1-i}$的共轭复数是2+i.

分析 利用复数的除法的运算法则化简复数,求出共轭复数即可.

解答 解:复数$\frac{1-3i}{1-i}$=$\frac{(1-3i)(1+i)}{(1-i)(1+i)}$=$\frac{4-2i}{2}$=2-i.
复数的共轭复数为2+i.
故答案为:2+i

点评 本题考查复数的代数形式的混合运算,复数的基本概念的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.如图是一个算法的伪代码,则输出i的值为5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解下列不等式:
(1)-3x2-2x+8≥0;
(2)0<x2-x-2≤4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图所示,四棱锥P-ABCD的底面是边长为a的正方形,侧棱PA⊥底面ABCD,且BE⊥PC于E,PA=a,$BE=\frac{{\sqrt{6}}}{3}a$,点F在线段AB上,并有EF∥平面PAD.则$\frac{BF}{FA}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若存在负实数使得方程2x-a=$\frac{1}{x-1}$成立,则实数a的取值范围是(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)满足:当f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^x}\\ f(x+1)\end{array}\right.{,^{\;}}$$\begin{array}{l}x≥4\\ \\ x<4\end{array}$,则f(2+log23)=(  )
A.$\frac{1}{24}$B.$\frac{1}{12}$C.$\frac{1}{8}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.命题p:“方程x2+$\frac{{y}^{2}}{m}$=1表示焦点在y轴上的椭圆”;命题q:对任意实数x都有mx2+mx+1>0恒成立.若p∧q是假命题,p∨q是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知θ是△ABC的一个内角,且sinθ+cosθ=$\frac{3}{4}$,则方程x2sinθ-y2cosθ=1表示(  )
A.焦点在x轴上的双曲线B.焦点在y轴上的双曲线
C.焦点在x轴上的椭圆D.焦点在y轴上的椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知曲线Cn的方程为:|x|n+|y|n=1(n∈N*).
(Ⅰ)分别求出n=1,n=2时,曲线Cn所围成的图形的面积;
(Ⅱ)若Sn(n∈N*)表示曲线Cn所围成的图形的面积,求证:Sn(n∈N*)关于n是递增的;
(Ⅲ) 若方程xn+yn=zn(n>2,n∈N),xyz≠0,没有正整数解,求证:曲线Cn(n>2,n∈N*)上任一点对应的坐标(x,y),x,y不能全是有理数.

查看答案和解析>>

同步练习册答案